variable | definition |
---|---|
obs | index |
lwage | quantity variable: log of wage |
edu | quantity variable: education years |
exp | quantity variable: working years |
exp2 | quantity variable: square working years/100 |
black | dummy: 1=black; 0=nonblack |
south | dummy: 1=southern area; 0= other |
urban | dummy: 1=live in urban; 0= other |
college | dummy: 1=college nearby; 0= other |
public | dummy: 1=public college nearby; 0= other |
private | dummy: 1=private college nearby; 0= other |
age | quantity variable: age (years) |
age2 | quantity variable: age square /100 |
momedu | quantity variable: mother’ education years |
dadedu | quantity variable: father’ education years |
IV Application (card)
College proximity as IVs for education
Case Description
Research Interests:
With data set Card1995.dta
, researchers were interest in the return (log(Wage)
) to education (edu
) .
In the wage example (wage
, or log wage lwage
), Let’s consider some of the variables shown below (see Table 1 ).
Models
Origin model
The origin model is
\[ \begin{aligned} lwage & = \hat{\alpha}_0 +\hat{\alpha}_1 {educ} + \hat{\alpha}_3 exp +\hat{\alpha}_4 exp2 \\ & +\hat{\alpha}_5 black +\hat{\alpha}_6 south +\hat{\alpha}_7 urban + u_i \end{aligned} \]
TSLS1: edu
V.S. college
we will use college
as instruments for educ
in our IV model setting.
\[\begin{cases} \begin{align} {edu} &= \hat{\gamma}_0 +\hat{\gamma}_1exp + \hat{\gamma}_2exp2 + \hat{\gamma}_3black + \hat{\gamma}_4south + \hat{\gamma}_5urban + \hat{\theta}_1college +v_i && \text{(stage 1)}\\ lwage & = \hat{\eta}_1 +\hat{\eta}_2\widehat{edu} + \hat{\eta}_3exp +\hat{\eta}_4exp2 +\hat{\eta}_5 black +\hat{\eta}_6 south +\hat{\eta}_7 urban+ e_i && \text{(stage 2)} \end{align} \end{cases}\]
TSLS2: (edu
,exp
,exp2
) V.S. (college
, age
, age2
)
we use (college
, age
, age2
) as instruments for (edu
,exp
,exp2
) in our IV model setting.
\[\begin{cases} \begin{align} {edu} &= \hat{\gamma}_0 +\hat{\gamma}_1age + \hat{\gamma}_2age2 + \hat{\gamma}_3black + \hat{\gamma}_4south + \hat{\gamma}_5urban + \hat{\theta}_1college +v_{1i} && \text{(1 of stage 1)}\\ {exp} &= \hat{\lambda}_0 +\hat{\lambda}_1age + \hat{\lambda}_2age2 + \hat{\lambda}_3black + \hat{\lambda}_4south + \hat{\lambda}_5urban + \hat{\lambda}_1college +v_{2i} && \text{(2 of stage 1)}\\ {exp2} &= \hat{\delta}_0 +\hat{\delta}_1age + \hat{\delta}_2age2 + \hat{\delta}_3black + \hat{\delta}_4south + \hat{\delta}_5urban + \hat{\delta}_1college +v_{3i} && \text{(3 of stage 1)}\\ lwage & = \hat{\eta}_1 +\hat{\eta}_2\widehat{edu} + \hat{\eta}_3exp +\hat{\eta}_4exp2 +\hat{\eta}_5 black +\hat{\eta}_6 south +\hat{\eta}_7 urban+ e_i && \text{(stage 2)} \end{align} \end{cases}\]
TSLS3: edu
V.S. (public
,private
)
we use both (public
,private
) as instruments for educ
in our IV model setting.
\[\begin{cases} \begin{align} {edu} &= \hat{\gamma}_0 +\hat{\gamma}_1exp + \hat{\gamma}_2exp2 + \hat{\gamma}_3black + \hat{\gamma}_4south + \hat{\gamma}_5urban + \hat{\theta}_1public + \hat{\theta}_2private +v_i && \text{(stage 1)}\\ lwage & = \hat{\eta}_1 +\hat{\eta}_2\widehat{edu} + \hat{\eta}_3exp +\hat{\eta}_4exp2 +\hat{\eta}_5 black +\hat{\eta}_6 south +\hat{\eta}_7 urban+ e_i && \text{(stage 2)} \end{align} \end{cases}\]
TSLS4: (edu
, exp
,exp2
) V.S. (public
,private
,age
,age2
)
we use both (public
,private
,age
,age2
) as instruments for (edu
, exp
,exp2
) in our IV model setting.
\[\begin{cases} \begin{align} {edu} &= \hat{\gamma}_0 +\hat{\gamma}_1age + \hat{\gamma}_2age2 + \hat{\gamma}_3black + \hat{\gamma}_4south + \hat{\gamma}_5urban + \hat{\theta}_1public + \hat{\theta}_2private +v_{1i} && \text{(1 of stage 1)}\\ {exp} &= \hat{\lambda}_0 +\hat{\lambda}_1age + \hat{\lambda}_2age2 + \hat{\lambda}_3black + \hat{\lambda}_4south + \hat{\lambda}_5urban + \hat{\lambda}_1public + \hat{\lambda}_2private +v_{2i} && \text{(2 of stage 1)}\\ {exp2} &= \hat{\delta}_0 +\hat{\delta}_1age + \hat{\delta}_2age2 + \hat{\delta}_3black + \hat{\delta}_4south + \hat{\delta}_5urban + \hat{\delta}_1public + \hat{\delta}_2private +v_{3i} && \text{(3 of stage 1)}\\ lwage & = \hat{\eta}_1 +\hat{\eta}_2\widehat{edu} + \hat{\eta}_3exp +\hat{\eta}_4exp2 +\hat{\eta}_5 black +\hat{\eta}_6 south +\hat{\eta}_7 urban+ e_i && \text{(stage 2)} \end{align} \end{cases}\]
Reproducible Sources
Hansen, B. Econometrics[M]. Princeton: Princeton University Press, 2022. Chapter 12: Instrumental Variables.
Table 12.1: Instrumental Variable Wage Regressions
Table 12.2: Reduced Form Regressions
Learning Targets
Understand the nature of
Endogeneity
.Know the steps of running TSLS method.
Be familiar with R package function
systemfit::systemfit()
andARE::ivreg()
.
Exercise Materials
You can find all the exercise materials in this project under the file directory:
D:/github/course-em-eng/02-homework/IV-wage-card
├── card1995.dta
└── code-card-hansen.R