Part 2: Simultaneous-Equation Models (SEM)

Chapter 17. Endogeneity and Instrumental Variables

Chapter 18. Why Should We Concern SEM?

Chapter 19. What is the Identification Problem?

Chapter 20. How to Estimate SEM?

Chapter 18. Why Should We Concern SEM?

18.1 The Nature of Simultaneous-Equation Models

18.2 Notes and Relative Definitions

18.3 Is OLS Method Still applicable?

18.1 The Nature of Simultaneous-Equation Models

Definition and basic format of SEM

- Simultaneous Equations Models (SEM): A system of equations consisting of several equations with interrelated or jointly influence.
- The basic and simple SEM is

$$\left\{egin{array}{l} Y_{1i} = eta_{10} + \gamma_{12}Y_{2i} + eta_{11}X_{1i} + u_{i1} \ Y_{2i} = eta_{20} + \gamma_{21}Y_{1i} + eta_{21}X_{1i} + u_{i2} \end{array}
ight.$$

Example 1: Demand-and-Supply System

Demand-and-Supply System:

$$egin{cases} ext{Demand function: } Q_t^d = lpha_0 + lpha_1 P_t + u_{1t}, & lpha_1 < 0 \ ext{Supply function: } Q_t^s = eta_0 + eta_1 P_t + u_{2t}, & eta_1 > 0 \ ext{Equilibrium condition: } Q_t^d = Q_t^s \end{cases}$$

Example 2: Keynesian Model of Income Determination

Keynesian Model of Income Determination:

$$\left\{egin{array}{ll} C_t = eta_0 + eta_1 Y_t + arepsilon_t & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(income identity)} \end{array}
ight.$$

Example 3: The IS Model

Macroeconomics goods market equilibrium model, also known as IS Model:

$$Consumption function: C_t = eta_0 + eta_1 Y_{dt} + u_{1t} \ Tax function: T_t = lpha_0 + lpha_1 Y_t + u_{2t} \ Tax function: I_t = \gamma_0 + \gamma_1 r_t + u_{3t} \ Definition: \gamma_{dt} = Y_t - T_t \ Government expenditure: G_t = ar{G} \ National income identity: Y_t = C_t + I_t + G_t$$

where:

Y=national income; $Y_d=$ disposable income; r=interest rate; $\bar{G}=$ given level of government expenditure

Example 4: The LM Model

Macroeconomics money market equilibrium system, also known as LM Model:

$$egin{aligned} ext{Money demand function: } & M_t^d = a + bY_t - cr_t + u_t \ ext{Money supply function: } & M_t^s = ar{M} \ ext{Equilibrium condition: } & M_t^d = M_t^s \end{aligned}$$

Where:

Y =income; r =interest rate; $\bar{M} =$ assumed level of money supply.

Example 5: Klein's model I

Klein's model I:

Consumption function:
$$C_t = \beta_0 + \beta_1 P_t + \beta_2 (W + W')_t + \beta_3 P_{t-1} + u_{t1}$$

Investment function: $I_t = \beta_4 + \beta_5 P_t + \beta_6 P_{t-1} + \beta_7 K_{t-1} + u_{t2}$

Demand for labor: $w_t = \beta_8 + \beta_9 (Y + T - W')_t + \beta_{10} (Y + T - W')_{t-1} + \beta_{11} t + u_{t3}$

Identity: $Y_t = C_t + I_t + C_t$

Identity: $Y_t = W'_t + W_t + P_t$

Identity: $K_t = K_{t-1} + I_t$

Where:

C =consumption expenditure; Y =income after tax; P =profits; W =private wage bill; W' =government wage bill; K =capital stock; T =taxes.

Example 6: Murder Rates and Size of the police Force

Cities often want to determine how much additional **law enforcement** will decrease their **murder rates**.

$$\left\{egin{array}{l} \mathrm{murdpc} = lpha_1 \, \mathrm{polpc} + eta_{10} + eta_{11} \mathrm{incpc} + u_1 \ \mathrm{polpc} \, = lpha_2 \, \mathrm{murdpc} + eta_{20} + \, \mathrm{other \, factors.} \end{array}
ight.$$

Where:

murdpc =murders per capita; polpc =number of police officers per capita; incpc =income per capita.

Example 7: Housing Expenditures and Saving

For a random household in the population, we assume that annual **housing** expenditures and saving are jointly determined by:

$$\left\{egin{array}{l} ext{housing} &= lpha_1 ext{saving} + eta_{10} + eta_{11} ext{inc} + eta_{12} educ + eta_{13} ext{age} + u_1 \ ext{saving} &= lpha_2 ext{housing} \, + eta_{20} + eta_{21} ext{inc} + eta_{22} educ + eta_{23} ext{age} + u_2 \end{array}
ight.$$

Where:

inc =annual income; saving =household saving; educ =education measured in years; age =age measured in years.

The Nature of SEM

The essence of simultaneous equation model is **endogenous variable** problem:

- Each of these equations has its economic causality effect.
- Some of these equations contain endogenous variables.
- Sample data is only the end result of various variables, which lies complex causal interaction behind them.
- Estimation all of the **parameters** directly by OLS method may induce problems.

Truffles example: the story

Truffles are delicious food materials. They are edible fungi that grow below the ground. Consider a supply and demand model for truffles:

$$\left\{egin{aligned} ext{Demand: } Q_{di} &= lpha_1 + lpha_2 P_i + lpha_3 P S_i + lpha_4 D I_i + e_{di} \ ext{Supply: } Q_{si} &= eta_1 + eta_2 P_i + eta_3 P F_i + e_{si} \ ext{Equity: } Q_{di} &= Q_{si} \end{aligned}
ight.$$

where:

- Q_i =the quantity of truffles traded in a particular marketplace;
- P_i =the market price of truffles;
- PS_i =the market price of a substitute for real truffles;
- DI_i =per capita monthly disposable income of local residents;
- PF_i =the price of a factor of production, which in this case is the hourly rental price of truffle-pigs used in the search process.

Truffles example: model variables

All variables

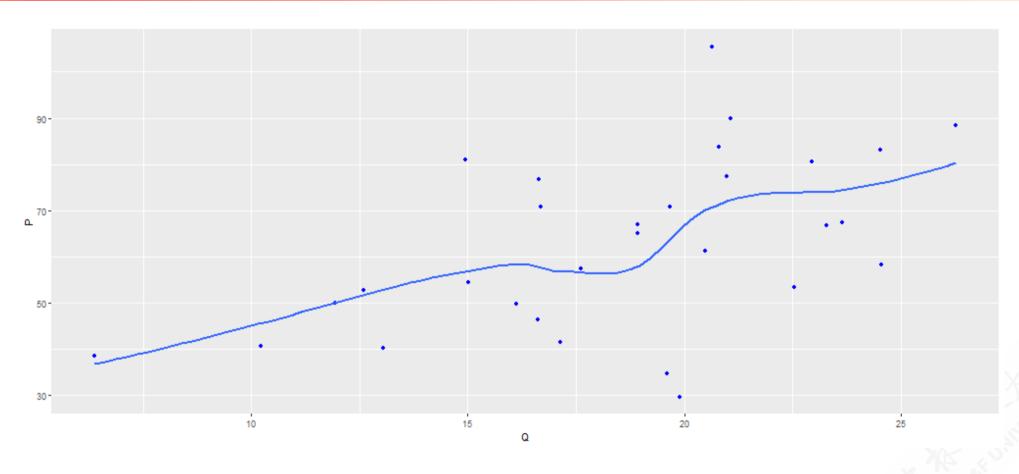
vars	label	*	measure	*
P	market price of truffles		dollar/ounce	
Q	market quantity of truffles		ounce	
PS	market price of substitute	NA ISE	dollar/ounce	
DI	disposable income		dollar/capita, monthly	
PF	rental price of truffles-pigs	SING	dollar/hour	

Truffles example: the data set

Truffles	data set	(n =	30)
----------	----------	------	-----

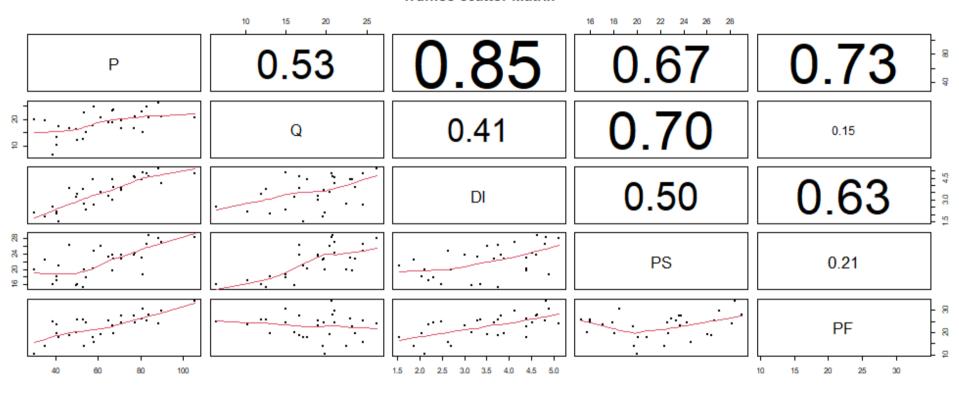
id 🛊	P •	Q 🗼	PS 🔷	DI 🔷	PF ♦	
1	29.64	19.89	19.97	2.103	10.52	
2	40.23	13.04	18.04	2.043	19.67	
3	34.71	19.61	22.36	1.87	13.74	
4	41.43	17.13	20.87	1.525	17.95	
5	53.37	22.55	19.79	2.709	13.71	
6	38.52	6.37	15.98	2.489	24.95	
7	54.33	15.02	17.94	2.294	24.17	
8	40.56	10.22	17.09	2.196	23.61	
ng 1 to 8 of 30 er	ntries			Previous 1 2	3 4 Next	

Truffles example: the Scatter plot (P VS Q)



Truffles example: the Scatter matrix

Truffles Scatter Matrix



Truffles example: the simple linear regression

Let's start with the simplest linear regression model.

Generally, we use price (P) and output (Q) data to directly conduct simple linear regression modeling:

$$\left\{ egin{aligned} P &= \hat{eta}_1 + \hat{eta}_2 Q + e_1 & ext{ (simple P model)} \ Q &= \hat{eta}_1 + \hat{eta}_2 P + e_2 & ext{ (simple Q model)} \end{aligned}
ight.$$

Truffles example: the simple linear regression

As we all know, the linear regression of two variables is asymmetrical, so there is:

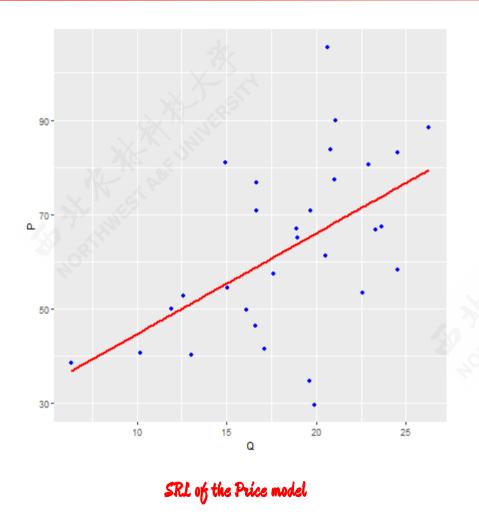
• the simple **Price** regression is:

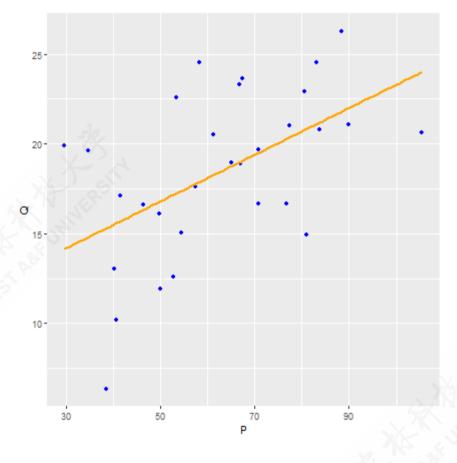
$$egin{aligned} \widehat{P} &=& +23.23 & +2.14Q \ ext{(t)} & (1.8748) & (3.2831) \ ext{(se)} & (12.3885) & (0.6518) \ ext{(fitness)} R^2 &= 0.2780; ar{R}^2 &= 0.2522 \ F^* &= 10.78; \ p &= 0.0028 \end{aligned}$$

• the simple Quantity regression is:

$$egin{aligned} \widehat{Q} &=& +10.31 & +0.13P \ (ext{t}) & (3.9866) & (3.2831) \ (ext{se}) & (2.5863) & (0.0396) \ (ext{fitness}) R^2 &= 0.2780; ar{R}^2 &= 0.2522 \ F^* &= 10.78; \; p = 0.0028 \end{aligned}$$

Truffles example: the sample regression line (SRL)





SRL of the Quantity model

Truffles example: the multi-variables regression model

Of course, we can also use more independent variables X to build the regression models:

$$\begin{cases} P = \hat{\beta}_1 + \hat{\beta}_2 Q + \hat{\beta}_3 DI + \hat{\beta}_2 PS + e_1 & \text{(added P model)} \\ Q = \hat{\beta}_1 + \hat{\beta}_2 P + \hat{\beta}_2 PF + e_2 & \text{(added Q model)} \end{cases}$$

Truffles example: the multi-variables regression model

• the estimation result of multi-vars **Price** regression model is:

$$egin{array}{lll} \widehat{P} = & -13.62 & +0.15Q & +12.36DI + 1.36PS \ (\mathrm{t}) & (-1.4987) & (0.3032) & (6.7701) & (2.2909) \ (\mathrm{se}) & (9.0872) & (0.4988) & (1.8254) & (0.5940) \ (\mathrm{fitness}) R^2 = 0.8013; \bar{R}^2 = 0.7784 \ F^* = 34.95; \; p = 0.0000 \end{array}$$

• the estimation result of multi-vars **Quantity** regression model is:

$$egin{array}{lll} \widehat{Q} =& +20.03 & +0.34P & -1.00PF \ (\mathrm{t}) & (16.3938) & (15.5436) & (-13.1028) \ (\mathrm{se}) & (1.2220) & (0.0217) & (0.0764) \ (\mathrm{fitness}) R^2 = 0.9019; \bar{R}^2 = 0.8946 \ & F^* = 124.08; p = 0.0000 \end{array}$$

18.2 Notations and Definitions

Structural SEM (1): algebraic expression A

Structural equations: System of equations that directly characterize economic structure or behavior.

The algebraic expression of structural SEM is:

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

Structural SEM (1): Structural coefficients

Structural coefficients: Parameters in structural equation that represents an economic outcome or behavioral relationship, including:

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

- Endogenous structural coefficients: $\gamma_{11}, \gamma_{21}, \cdots, \gamma_{m1}; \cdots; \gamma_{1m}, \gamma_{2m}, \cdots, \gamma_{mm}$
- Exogenous structural coefficients: $\beta_{11}, \beta_{21}, \dots, \beta_{m1}; \dots; \beta_{1m}, \beta_{2m}, \dots, \beta_{mm};$

Structural SEM (1): Structural variables

- Endogenous variables: Variables determined by the model.
- **Predetermined variables:** Variables which values are not determined by the model in the **current** time period.

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

Endogenous variables:

• Such as: $Y_{t1}; Y_{t2}; \cdots; Y_{tm}$

Predetermined variables:

• Such as: X

Structural SEM (1): Predetermined variables

Predetermined variables: Variables which values are not determined by the model in the **current** time period, including:

- the exogenous variables
- the lagged endogenous variables.

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

Structural SEM (1): Predetermined variables

- Exogenous variables: The variables not determined by the model, neither in the current period nor in the lagged period.
- Lagged endogenous variables: The lag variable of the endogenous variable in the current period.

current period exogenous:

 \bullet $X_{t1}, X_{t2}, \cdots, X_{tk}$.

lagged period exdogenous:

- ullet lagged from $X_{t1}\colon X_{t-1,1}; X_{t-2,1}; \cdots; X_{t-(T-1),1}$
- ullet and lagged from X_{tk} : $X_{t-1,k}; X_{t-2,k}; \cdots; X_{t-(T-1),k}$

• • •

lagged endogenous:

- lagged from Y_{t1} : $Y_{t-1,1}; Y_{t-2,1}; \cdots, Y_{t-(T-1),1}$
- and lagged from Y_{tm} : $Y_{t-1,m}; Y_{t-2,m}; \cdots; Y_{t-(T-1),m}$
- • •

Structural SEM (1): Predetermined coefficients

Predetermined coefficients: coefficients before predetermined variables.

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

Such as:

all β...

Structural SEM (1): algebraic expression B

By simple transformation, the algebraic expression of SEM can also show as:

$$A: \left\{ \begin{array}{l} Y_{t1} = & + \gamma_{21}Y_{t2} + \cdots + \gamma_{m1}Y_{tm} + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \cdots + \beta_{k1}X_{tk} + \varepsilon_{t1} \\ Y_{t2} = \gamma_{12}Y_{t1} + & \cdots + \gamma_{m2}Y_{tm} + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \cdots + \beta_{k2}X_{tk} + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \cdots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \cdots + \beta_{km}X_{tk} + \varepsilon_{tm} \\ \end{array} \right.$$

$$\Rightarrow B: \left\{ \begin{array}{l} \gamma_{11}Y_{t1} + \gamma_{21}Y_{t2} + \cdots + \gamma_{m-1,1}Y_{t,m-1} + \gamma_{m1}Y_{tm} + \beta_{11}X_{t1} + \beta_{21}X_{t2} + \cdots + \beta_{k1}X_{tk} = \varepsilon_{t1} \\ \gamma_{12}Y_{t1} + \gamma_{22}Y_{t2} + \cdots + \gamma_{m-1,1}Y_{t,m-1} + \gamma_{m2}Y_{tm} + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \cdots + \beta_{k2}X_{tk} = \varepsilon_{t2} \\ \vdots & \vdots & \vdots \\ \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \cdots + \gamma_{m-1,m}Y_{t,m-1} + \gamma_{mm}Y_{tm} + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \cdots + \beta_{km}X_{tk} = \varepsilon_{tm} \end{array} \right.$$

Structural SEM (2): matrix expression

With the Matrix language, the **matrix expression** of SEM was noted as:

$$egin{aligned} egin{aligned} egi$$

Structural SEM (2): matrix expression

For Simplicity, we can generized the **matrix expression** of SEM:

$$egin{array}{lll} oldsymbol{y_t'} oldsymbol{\Gamma} & +oldsymbol{x_t'} oldsymbol{B} & =oldsymbol{arepsilon_t'} \ (1*m)(m*m) & (1*k)(k*m) & (1*m) \end{array}$$

where:

- Bold upper letter and greek means a matrix
- Bold lower letter and greek means a column vector

Structural SEM (2): Endogenous coefficients matrix

For the **Endogenous parameter matrix** Γ :

- To ensure that each equation has a **dependent variable**, then the matrix Γ each column has at least one element of 1
- If matrix Γ is upper triangular matrix, then the SEM is a **recursive** model system.
- For the SEM solution to exist, Γ must be **nonsingular**.

$$oldsymbol{\Gamma} = egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots & \cdots \ \gamma_{m1} & \gamma_{m2} & \cdots & \gamma_{mm} \end{bmatrix} \ egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \end{bmatrix}$$

$$ext{if} \, \Rightarrow egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \ 0 & \gamma_{22} & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & \gamma_{mm} \end{bmatrix}$$

$$oldsymbol{\Gamma} = egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots \ \gamma_{m1} & \gamma_{m2} & \cdots & \gamma_{mm} \end{bmatrix} egin{bmatrix} y_{1t} = & f_1\left(\mathbf{x}_t
ight) + arepsilon_{t1} \ y_{2t} = & f_2\left(y_{t1},\mathbf{x}_t
ight) + arepsilon_{t2} \ dots & dots \ y_{mt} = & f_m\left(y_{t1},y_{t2},\ldots,\mathbf{x}_t
ight) + arepsilon_{mt} \ \end{pmatrix}$$

Structural SEM (2): Exdogenous coefficients matrix

The Exogenous coefficients matrix B:

$$m{B} = egin{bmatrix} eta_{11} & eta_{12} & \cdots & eta_{1m} \ eta_{21} & eta_{22} & \cdots & eta_{2m} \ \cdots & \cdots & \cdots & \cdots \ eta_{k1} & eta_{k2} & \cdots & eta_{km} \end{bmatrix}$$

Reduced SEM (1): algebraic expression

Reduced equations: The equation expresses an endogenous variable with all the predetermined variables and the stochastic disturbances.

$$\begin{cases} Y_{t1} = +\pi_{11}X_{t1} + \pi_{21}X_{t2} + \dots + \pi_{k1}X_{tk} + v_{t1} \\ Y_{t2} = +\pi_{12}X_{t1} + \pi_{22}X_{t2} + \dots + \pi_{k2}X_{tk} + v_{t2} \\ \vdots & \vdots & \vdots \\ Y_{tm} = +\pi_{1m}X_{t1} + \pi_{2m}X_{t2} + \dots + \pi_{km}X_{tk} + v_{tm} \end{cases}$$

Reduced SEM (1): Reduced coefficients and disturbance

- Reduced coefficients: parameters in the reduced SEM.
- **Reduced disturbance**: stochastic disturbance terms in the reduced SEM.

$$\left\{egin{array}{ll} Y_{t1} = & +\pi_{11}X_{t1} + \pi_{21}X_{t2} + \cdots + \pi_{k1}X_{tk} & +v_{t1} \ Y_{t2} = & +\pi_{12}X_{t1} + \pi_{22}X_{t2} + \cdots + \pi_{k2}X_{tk} & +v_{t2} \ dots & dots & dots \ Y_{tm} = & +\pi_{1m}X_{t1} + \pi_{2m}X_{t2} + \cdots + \pi_{km}X_{tk} + v_{tm} \end{array}
ight.$$

Reduced coefficients:

- $\pi_{11}, \pi_{21}, \cdots, \pi_{k1}$
- \bullet $\pi_{1m}, \pi_{2m}, \cdots, \pi_{km}$.

Reduced disturbance:

$$\bullet$$
 $v_1, v_2, \cdots, v_m \circ$

Reduced SEM (2): matrix expression

$$\left\{egin{array}{ll} Y_{t1} = & +\pi_{11}X_{t1} + \pi_{21}X_{t2} + \cdots + \pi_{k1}X_{tk} & +v_{t1} \ Y_{t2} = & +\pi_{12}X_{t1} + \pi_{22}X_{t2} + \cdots + \pi_{k2}X_{tk} & +v_{t2} \ dots & dots & dots \ Y_{tm} = & +\pi_{1m}X_{t1} + \pi_{2m}X_{t2} + \cdots + \pi_{km}X_{tk} + v_{tm} \end{array}
ight.$$

For this algebraic reduced SEM, we can note its matrix form as:

Reduced SEM (2): matrix expression

For simplicity, the matrix expression of reduced SEM can be noted further.

$$egin{array}{lll} oldsymbol{y}_t' & = oldsymbol{x}_t' oldsymbol{\Pi} & + oldsymbol{v}_t' \ (1*m) & (1*k)(k*m) & (1*m) \end{array}$$

• the reduced coefficients matrix is:

$$oldsymbol{\Pi} = egin{bmatrix} \pi_{11} & \pi_{12} & \cdots & \pi_{1m} \ \pi_{21} & \pi_{22} & \cdots & \pi_{2m} \ \cdots & \cdots & \cdots & \cdots \ \pi_{m1} & \pi_{m2} & \cdots & \pi_{mm} \end{bmatrix}$$

• the reduced disturbances vector is:

$$oldsymbol{v_t'} = \left[egin{array}{cccc} v_1 & v_2 & \cdots & v_m \end{array}
ight]_t$$

Structural VS Reduced SEM: the two systems

We can induce Reduced Equations from Structural Equations:

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + \dots + \gamma_{m2}Y_{tm} + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} + \varepsilon_{t2} \\ \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

$$\Rightarrow \begin{cases} Y_{t1} = & +\pi_{11}X_{t1} + \pi_{21}X_{t2} + \dots + \pi_{k1}X_{tk} + v_{t1} \\ Y_{t2} = & +\pi_{12}X_{t1} + \pi_{22}X_{t2} + \dots + \pi_{k2}X_{tk} + v_{t2} \\ \vdots & \vdots & \vdots \\ Y_{tm} = & +\pi_{1m}X_{t1} + \pi_{2m}X_{t2} + \dots + \pi_{km}X_{tk} + v_{tm} \end{cases}$$

Structural VS Reduced SEM: coefficients

The Structural SEM:

$$oldsymbol{y}_t' oldsymbol{\Gamma} + oldsymbol{x}_t' oldsymbol{B} = oldsymbol{arepsilon}_t'$$

The Reduced SEM:

$$oldsymbol{y_t'} = oldsymbol{x_t'} oldsymbol{\Pi} + oldsymbol{v_t'}$$

• where:

$$egin{aligned} oldsymbol{\Pi} &= -oldsymbol{B}oldsymbol{\Gamma}^{-1} \ oldsymbol{v}_t' &= oldsymbol{arepsilon}_t'oldsymbol{\Gamma}^{-1} \end{aligned}$$

• and:

$$oldsymbol{\Gamma} = egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots & \cdots \ \gamma_{m1} & \gamma_{m2} & \cdots & \gamma_{mm} \end{bmatrix}$$

Structural VS Reduced SEM: Moments

Now we concern the first and second moments of the disturbance:

• first, let us assumed the moments of **structural disturbances** satisfy:

$$egin{aligned} \mathbf{E}[arepsilon_{\mathbf{t}}|\mathbf{x}_{\mathbf{t}}] &= \mathbf{0} \ \mathbf{E}[arepsilon_{\mathbf{t}}arepsilon_{t}'|\mathbf{x}_{\mathbf{t}}] &= \mathbf{\Sigma} \ E\left[oldsymbol{arepsilon}_{t}oldsymbol{arepsilon}_{s}|\mathbf{x}_{t},\mathbf{x}_{s}
ight] &= \mathbf{0}, \quad orall t,s \end{aligned}$$

• then, we can prove that the **reduced disturbances** satisfy:

$$egin{aligned} E\left[\mathbf{v}_t|\mathbf{x}_t
ight] &= \left(\mathbf{\Gamma}^{-1}
ight)'\mathbf{0} = \mathbf{0} \ E\left[\mathbf{v}_t\mathbf{v}_t'|\mathbf{x}_t
ight] &= \left(\mathbf{\Gamma}^{-1}
ight)'\mathbf{\Sigma}\mathbf{\Gamma}^{-1} = \mathbf{\Omega} \ \end{aligned} \ ext{where: } \mathbf{\Sigma} &= \mathbf{\Gamma}'\mathbf{\Omega}\mathbf{\Gamma} \end{aligned}$$

Structural VS Reduced SEM: useful expression*

In a sample of data, each joint observation will be one row in a data matrix (with T observations):

$$\left[egin{array}{cccc} \mathbf{Y} & \mathbf{X} & \mathbf{E}
ight] = egin{bmatrix} \mathbf{y}_1' & \mathbf{x}_1' & oldsymbol{arepsilon}_1' \ \mathbf{y}_2' & \mathbf{x}_2' & oldsymbol{arepsilon}_2' \ dots & & & \ \mathbf{y}_T' & \mathbf{x}_T' & oldsymbol{arepsilon}_T \end{array}
ight]$$

then the structural SEM is:

$$\mathbf{Y}\mathbf{\Gamma} + \mathbf{X}\mathbf{B} = \mathbf{E}$$

the first and second moment of structural disturbances is:

$$E[\mathbf{E}|\mathbf{X}] = \mathbf{0}$$
 $E\left[(1/T)\mathbf{E}'\mathbf{E}|\mathbf{X}
ight] = \mathbf{\Sigma}$

Structural VS Reduced SEM: useful expression*

Assume that:

$$(1/T)\mathbf{X}'\mathbf{X} o \mathbf{Q}$$
 (a finite positive definite matrix) $(1/T)\mathbf{X}'\mathbf{E} o \mathbf{0}$

then the reduced SEM can be noted as:

$$\mathbf{Y} = \mathbf{X}\mathbf{\Pi} + \mathbf{V} \qquad \leftarrow \mathbf{V} = \mathbf{E}\mathbf{\Gamma}^{-1}$$

And we may have following useful results:

$$rac{1}{T}egin{bmatrix} \mathbf{Y}' \ \mathbf{X}' \ \mathbf{V}' \end{bmatrix} egin{bmatrix} \mathbf{Y} & \mathbf{X} & \mathbf{V} \end{bmatrix} &
ightarrow & egin{bmatrix} \mathbf{I}'\mathbf{Q}\mathbf{I} + \mathbf{\Omega} & \mathbf{I}\mathbf{I}'\mathbf{Q} & \mathbf{\Omega} \ \mathbf{Q}\mathbf{I} & \mathbf{Q} & \mathbf{0}' \ \mathbf{\Omega} & \mathbf{0} & \mathbf{\Omega} \end{bmatrix}$$

Case 1: Keynesian income model (structural SEM)

The Keynesian model of income determination (structural SEM):

$$\left\{egin{array}{ll} C_t = eta_0 + eta_1 Y_t + arepsilon_t & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(income equity)} \end{array}
ight.$$

So the structural SEM contains:

2 endogenous variables:

• $c_t; Y_t$

1 predetermined variables:

- 1 exogenous variables: I_t
- 0 lagged endogenous variable.

Exercise: can you get the reduced SEM from this structural SEM?

Case 1: Keynesian income model (reduced SEM)

We can get the reduced SEM from the former structural SEM and denoted (the right):

$$\left\{egin{array}{l} Y_t = rac{eta_0}{1-eta_1} + rac{1}{1-eta_1} I_t + rac{arepsilon_t}{1-eta_1} \ C_t = rac{eta_0}{1-eta_1} + rac{eta_1}{1-eta_1} I_t + rac{arepsilon_t}{1-eta_1} \ \end{array}
ight. \left\{egin{array}{l} Y_t = \pi_{11} + \pi_{21} I_t + v_{t1} \ C_t = \pi_{12} + \pi_{22} I_t + v_{t2} \end{array}
ight.$$

where:

$$\left\{egin{array}{l} \pi_{11}=rac{eta_0}{1-eta_1}; & \pi_{21}=rac{eta_0}{1-eta_1}; & v_{t1}=rac{arepsilon_t}{1-eta_1}; \ \pi_{12}=rac{1}{1-eta_1}; & \pi_{22}=rac{eta_1}{1-eta_1}; & v_{t2}=rac{arepsilon_t}{1-eta_1}; \end{array}
ight.$$

there are 2 structural coefficients β_0 ; β_1 totally; and 4 reduced coefficients $\pi_{11}, \pi_{21}; \pi_{12}, \pi_{22}$ (There are actually three only!)

Case 2: Macroeconomic Model (structural SEM)

Consider the **Small Macroeconomic Model** (Structural SEM):

$$\left\{egin{aligned} ext{consumption: } c_t &= lpha_0 + lpha_1 y_t + lpha_2 c_{t-1} + arepsilon_{t,c} \ ext{investment: } i_t &= eta_0 + eta_1 r_t + eta_2 \left(y_t - y_{t-1}
ight) + arepsilon_{t,j} \ ext{demand: } y_t &= c_t + i_t + g_t \end{aligned}
ight.$$

where: c_t = consumption; y_t = output; i_t = investment; r_t = rate; g_t = government expenditure.

3 endogenous variables: c_t ; i_t ; Y_t

totally 6 **strutural coefficients**:

4 predetermined variables:

$$\alpha_0, \alpha_1, \alpha_2; \beta_0, \beta_1, \beta_2;$$

- 2 exogenous variables: r_t ; g_t .
- 2 lagged endogenous variables:

$$y_{t-1}; c_{t-1}$$

Case 2: Macroeconomic Model (reduced SEM)

We can get the reduced SEM from the former structural SEM: (HOW TO??)

$$\begin{cases} c_{t} = & \left[\alpha_{0}(1-\beta_{2}) + \beta_{0}\alpha_{1} + \alpha_{1}\beta_{1}r_{t} + \alpha_{1}g_{t} + \alpha_{2}\left(1-\beta_{2}\right)c_{t-1} - \alpha_{1}\beta_{2}y_{t-1} \right. \\ & \left. + (1-\beta_{2})\,\varepsilon_{t,c} + \alpha_{1}\varepsilon_{t,j}\right]/\Lambda \\ i_{t} = & \left[\alpha_{0}\beta_{2} + \beta_{0}\left(1-\alpha_{1}\right) + \beta_{1}\left(1-\alpha_{1}\right)r_{t} + \beta_{2}g_{t} + \alpha_{2}\beta_{2}c_{t-1} - \beta_{2}\left(1-\alpha_{1}\right)y_{t-1} \right. \\ & \left. + \beta_{2}\varepsilon_{t,c} + (1-\alpha_{1})\,\varepsilon_{t,j}\right]/\Lambda \\ y_{t} = & \left[\alpha_{0} + \beta_{0} + \beta_{1}r_{t} + g_{t} + \alpha_{2}c_{t-1} - \beta_{2}y_{t-1} + \varepsilon_{t,c} + \varepsilon_{t,j}\right]/\Lambda \end{cases}$$

where: $\Lambda = 1 - \alpha_1 - \beta_2$. For simplicity, denote the **reduced SEM** as:

$$\left\{egin{array}{l} c_t = \pi_{11} + \pi_{21} r_t + \pi_{31} g_t + \pi_{41} c_{t-1} + \pi_{51} y_{t-1} + v_{t1} \ i_t = \pi_{12} + \pi_{22} r_t + \pi_{32} g_t + \pi_{42} c_{t-1} + \pi_{52} y_{t-1} + v_{t2} \ i_t = \pi_{13} + \pi_{23} r_t + \pi_{33} g_t + \pi_{43} c_{t-1} + \pi_{53} y_{t-1} + v_{t3} \end{array}
ight.$$

So we have 15 **reduced coefficients** totally!

Case 2: Macroeconomic Model (thinking)

Thinking:

- What are the purposes of structural SEM and reduced SEM respectively?
- Note the consumption function (in structural SEM): the rate i_t does not impact the consumption c_t !
 - It will be obvious from the reduced SEM that $\frac{\Delta c_t}{\Delta r_t} = \frac{\alpha_1 \beta_1}{\Lambda}$
- Note the consumption function (in structural SEM): What are the reasons for the impact of income y_t on consumption c_t ?
 - It's also easy to get the answer by transformation:

$$rac{\Delta c_t}{\Delta y_t} = rac{\Delta c_t/\Delta r_t}{\Delta y_t/\Delta r_t} = rac{lpha_1eta_1/\Lambda}{eta_1/\Lambda} = lpha_1$$

Case 2: Macroeconomic Model (the relationship)

According to the relationship between Structural SEM and Reduced SEM:

$$oldsymbol{y_t'} = -oldsymbol{x_t'}oldsymbol{\Pi} + oldsymbol{v_t'} = -oldsymbol{x_t'}oldsymbol{B}oldsymbol{\Gamma^{-1}} + oldsymbol{arepsilon_t'}oldsymbol{\Gamma^{-1}}$$

Then, the following matrixes can be easily obtained:

$$\mathbf{x}' = [c \quad i \quad y] \ \mathbf{x}' = [1 \quad r \quad g \quad c_{-1} \quad y_{-1}]$$
 $\Gamma = \begin{bmatrix} 1 & 0 & -1 \ 0 & 1 & -1 \ -\alpha_1 & -\beta_2 & 1 \end{bmatrix}$ $\Gamma = \begin{bmatrix} 1 & 0 & -1 \ 0 & 1 & -1 \ -\alpha_1 & -\beta_2 & 1 \end{bmatrix}$ $\Gamma^{-1} = \frac{1}{\Lambda} \begin{bmatrix} 1 - \beta_2 & \beta_2 & 1 \ \alpha_1 & 1 - \alpha_1 & 1 \ \alpha_1 & \beta_2 & 1 \end{bmatrix}$

$$egin{aligned} \Gamma &= egin{bmatrix} 1 & 0 & -1 \ 0 & 1 & -1 \ -lpha_1 & -eta_2 & 1 \end{bmatrix} \ m{\Gamma}^{-1} &= rac{1}{\Lambda} egin{bmatrix} 1 - eta_2 & eta_2 & 1 \ lpha_1 & 1 - lpha_1 & 1 \ lpha_1 & eta_2 & 1 \end{bmatrix} \end{aligned}$$

Case 2: Macroeconomic Model (calculations)

We can get the same answers: (It's so easy!)

$$oldsymbol{\Pi} = -oldsymbol{B}oldsymbol{\Gamma}^{-1} = rac{1}{\Lambda}egin{bmatrix} lpha_0 \left(1-eta_2
ight) + eta_0 lpha_1 & lpha_0 eta_2 + eta_0 \left(1-lpha_1
ight) & lpha_0 + eta_0 \ lpha_1 eta_1 & eta_1 \left(1-lpha_1
ight) & eta_1 \ lpha_2 \left(1-eta_2
ight) & lpha_2 eta_2 & 1 \ lpha_2 \left(1-eta_2
ight) & lpha_2 eta_2 & lpha_2 \ -eta_2 lpha_1 & -eta_2 \left(1-lpha_1
ight) & -eta_2 \end{array}
ight]$$

$$oldsymbol{\Pi'} = rac{1}{\Lambda} egin{bmatrix} lpha_0 \left(1 - eta_2
ight) + eta_0 lpha_1 & lpha_1 eta_1 & lpha_1 & lpha_2 \left(1 - eta_2
ight) & -eta_2 lpha_1 \ lpha_0 eta_2 + eta_0 \left(1 - lpha_1
ight) & eta_1 \left(1 - lpha_1
ight) & eta_2 & lpha_2 eta_2 & -eta_2 \left(1 - lpha_1
ight) \ lpha_0 + eta_0 & eta_1 & 1 & lpha_2 & -eta_2 \end{bmatrix}$$

• Where:

$$\Lambda = 1 - \alpha_1 - \beta_2$$

• Remeber that:

$$\mathbf{x}' = egin{bmatrix} 1 & r & g & c_{-1} & y_{-1} \end{bmatrix}$$

Supplement: inverse matrix solution and procedure*

Use the elementary row operation (Gauss-Jordan) to find the inverse matrix:

- 1. Construct augmented matrix
- 2. Transform the augmented matrix for many times until the goal is achieved.

Use cofactor, algebraic cofactor and adjoint matrix to get the inverse matrix:

- 1. Calculate cofactor matrix and algebraic cofactor matrix;
- 2. Calculate adjoint matrix: it is the transpose of the cofactor matrix;
- 3. Calculate the **determinant** of original matrix : each element of **top row** in the original matrix is multiplied by its corresponding **top row** element in the "cofactor matrix";
- 4. Calculated the inverse matrix: 1/ determinant × adjoint matrix

18.3 Is the OLS Method Still applicable?

Endogenous variable problem

Consider Keynes's model of income determination, We will be able to show that Y_t and u_t will be correlated, thus violating the CLRM **A2** assumption.

$$\left\{egin{array}{ll} C_t = eta_0 + eta_1 Y_t + u_t & (0 < eta_1 < 1) & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(Income Identity)} \end{array}
ight.$$

By transforming the above structural equation, we obtained:

$$Y_t = eta_0 + eta_1 Y_t + I_t + u_t$$

$$Y_t = \frac{eta_0}{1 - eta_1} + \frac{1}{1 - eta_1} I_t + \frac{1}{1 - eta_1} u_t \qquad ext{(eq1: Reduced equation)}$$

$$E(Y_t) = \frac{eta_0}{1 - eta_1} + \frac{1}{1 - eta_1} I_t \qquad ext{(eq2: Take the expectation for both sides)}$$

Endogenous variable problem

Further more:

$$egin{aligned} Y_t - E(Y_t) &= rac{u_t}{1-eta_1} & (ext{eq } 1 - ext{eq } 2) \ u_t - E(u_t) &= u_t & (ext{eq } 3 ext{: Expectation is equal to } 0) \ cov(Y_t, u_t) &= E([Y_t - E(Y_t)][u_t - E(u_t)]) & (ext{eq } 4 ext{: Covariance definition}) \ &= rac{E(u_t^2)}{1-eta_1} & (ext{eq } 5 ext{: Variance definition}) \ &= rac{\sigma^2}{1-eta_1}
eq 0 & (ext{eq } 6 ext{: The variance is not } 0) \end{aligned}$$

- Therefore, the consumption equation of the Keynesian model will not satisfy the CLRM A2 assumption.
- Thus, OLS method cannot be used to obtain **Best linear unbiased estimator** (BLUE) for consumption equation.

The OLS estimator of the coefficient is biased

Furthermore, the OLS estimator is biased to its true β_1 , which means $E(\hat{\beta}_1) \neq \beta_1$. The proof show as below.

$$\left\{egin{array}{ll} C_t = eta_0 + eta_1 Y_t + u_t & (0 < eta_1 < 1) & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(Income Identity)} \end{array}
ight.$$

$$\hat{\beta}_1 = \frac{\sum c_t y_t}{\sum y_t^2} = \frac{\sum C_t y_t}{\sum y_t^2} = \frac{\sum \left[(\beta_0 + \beta_1 Y_t + u_t) y_t \right]}{\sum y_t^2} = \beta_1 + \frac{\sum u_t y_t}{\sum y_t^2} \qquad \text{(eq 1)}$$

Take the expectation of both sides in eq 1, so:

$$E(\hat{eta}_1) = eta_1 + E\left(rac{\sum u_t y_t}{\sum y_t^2}
ight)$$

Question: is the expactation $E\left(\frac{\sum u_t y_t}{\sum y_t^2}\right)$ equal to zero?

Supplement: Proof 1/2

$$\frac{\sum c_{t}y_{t}}{\sum y_{t}^{2}} = \frac{\sum (C_{t} - \bar{C})(Y_{t} - \bar{Y})}{\sum y_{t}^{2}} = \frac{\sum (C_{t} - \bar{C})y_{t}}{\sum y_{t}^{2}}$$

$$= \frac{\sum C_{t}y_{t} - \sum \bar{C}y_{t}}{\sum y_{t}^{2}} = \frac{\sum C_{t}y_{t} - \sum \bar{C}(Y_{t} - \bar{Y})}{\sum y_{t}^{2}}$$

$$= \frac{\sum C_{t}y_{t} - \bar{C} \sum Y_{t} - \sum \bar{C}\bar{Y}}{\sum y_{t}^{2}} = \frac{\sum C_{t}y_{t} - \bar{C} \sum Y_{t} - n\bar{C}\bar{Y}}{\sum y_{t}^{2}} = \frac{\sum C_{t}y_{t} - \bar{C} \sum Y_{t} - n\bar{C}\bar{Y}}{\sum y_{t}^{2}}$$

$$\hat{\beta}_{1} = \frac{\sum (\beta_{0} + \beta_{1}Y_{t} + u_{t})y_{t}}{\sum y_{t}^{2}} = \frac{\sum \beta_{0}y_{t} + \sum \beta_{1}Y_{t}y_{t} + \sum u_{t}y_{t}}{\sum y_{t}^{2}}$$

$$= \frac{\beta_{1} \sum (y_{t} + \bar{Y})y_{t} + \sum u_{t}y_{t}}{\sum y_{t}^{2}} = \beta_{1} + \frac{\sum y_{t}u_{t}}{\sum y_{t}^{2}}$$

$$\Leftarrow \sum y_{t} = 0; \qquad \frac{\sum Y_{t}y_{t}}{y_{t}^{2}} = 1$$

Supplement: Proof 2/2

Conduct the limit to probability:

$$egin{aligned} ext{plim} \Big(\hat{eta}_1 \Big) &= ext{plim} (eta_1) + ext{plim} igg(rac{\sum y_t u_t}{\sum y_t^2} igg) \ &= ext{plim} (eta_1) + ext{plim} igg(rac{\sum y_t u_t/n}{\sum y_t^2/n} igg) = eta_1 + rac{ ext{plim} (\sum y_t u_t/n)}{ ext{plim} ig(\sum y_t^2/n ig)} \end{aligned}$$

And we've shown that:

$$cov(Y_t, u_t) = E([Y_t - E(Y_t)][u_t - E(u_t)]) = rac{E(u_t^2)}{1 - eta_1} = rac{\sigma^2}{1 - eta_1}
eq 0$$

Therefore we finaly prove:
$$E\left(\frac{\sum u_t y_t}{\sum y_t^2}\right)
eq 0$$

Simulation: artificially population

Here, we construct an artificially controlled population for our Keynes's SEM model.

$$egin{cases} C_t = eta_0 + eta_1 Y_t + u_t & (0 < eta_1 < 1) & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(Income Identity)} \ \ egin{cases} C_t = 2 + 0.8 Y_t + u_t & (0 < eta_1 < 1) & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(Income Identity)} \end{cases}$$

The artificially controlled population is set to:

•
$$\beta_0 = 2, \beta_1 = 0.8, I_t \leftarrow \text{given values}$$

$$ullet$$
 $E(u_t)=0, var(u_t)=\sigma^2=0.04$

$$ullet E(u_tu_{t+j})=0, j
eq 0$$

•
$$cov(u_t, I_t) = 0$$

Simulation: the data sets

The simulation data under given conditions are:

Y •	C		
1 7		▼ 1 ▼	u ♦
18.1570	16.1570	2	-0.3686
19.5998	17.5998	2	-0.0800
21.9347	19.7347	2.2	0.1869
21.5514	19.3514	2.2	0.1103
21.8843	19.4843	2.4	-0.0231
22.4265	20.0265	2.4	0.0853
25.4094	22.8094	2.6	0.4819
22.6952	20.0952	2.6	-0.0610
Showing 1 to 8 of 20 entries			Previous 1 2 3 Next

Simulation: manual calculation

According to the above formula, the regression coefficient can be calculated as follows:

Easy to calculate: $\sum u_t y_t = 3.8000$

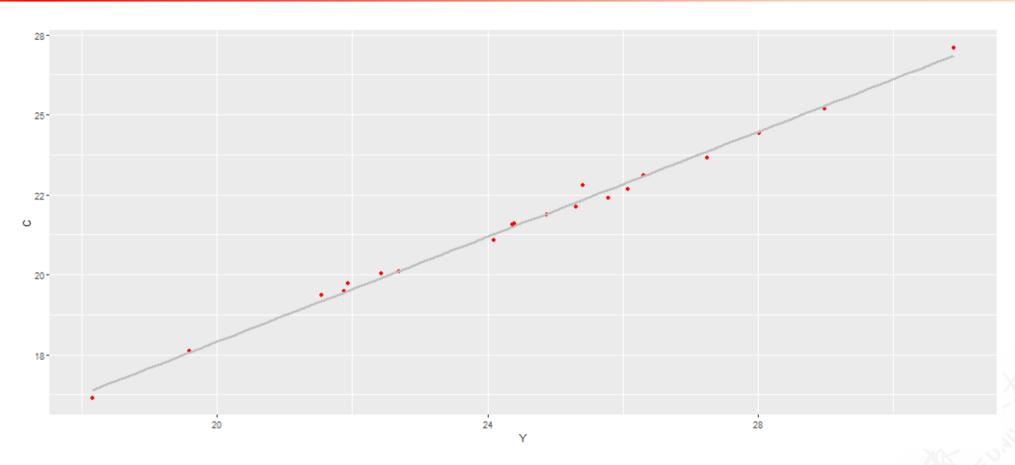
And: $\sum y_t^2 = 184.0000$

And: $\frac{\sum u_t y_t}{\sum y_t^2} = 0.0207$

Hence: $\hat{\beta}_1 = \beta_1 + \frac{\sum u_t y_t}{\sum y_t^2} = 0.8 + 0.0207 = 0.8207$

This also means that $\hat{\beta}_1$ is different from $\beta_1 = 0.8$, and the difference is 0.0207.

Simulation: scatter plots



Simulation: regression report 1

Next, we used the simulated data for R analysis to obtain the original OLS report.

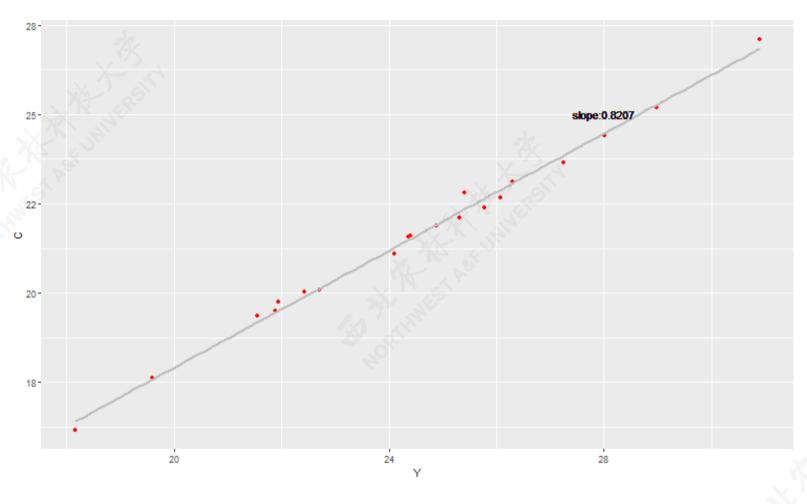
```
Call:
lm(formula = mod_monte$mod.C, data = monte)
Residuals:
   Min
       1Q Median 3Q Max
-0.2700 -0.1586 -0.0013 0.0927 0.4631
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.4940 0.3541 4.22 0.00052 ***
       0.8207 0.0143 57.21 < 2e-16 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2 on 18 degrees of freedom
Multiple R-squared: 0.995, Adjusted R-squared: 0.994
F-statistic: 3.27e+03 on 1 and 18 DF, p-value: <2e-16
```


Simulation: regression report 2

The tidy report of OLS estimation shows below.

$$egin{array}{lll} \widehat{C} = & +1.49 & +0.82Y \ (\mathrm{t}) & (4.2188) & (57.2090) \ (\mathrm{se}) & (0.3541) & (0.0143) \ (\mathrm{fitness})n = 20; & R^2 = 0.9945; \bar{R}^2 = 0.9942 \ F^* = 3272.87; p = 0.0000 \end{array}$$

Simulation: sample regression line (SRL)



Conclusions and points

So let's summarize this chapter.

- Compared with the single-equation model, the SEM involves more than one dependent or endogenous variable. So there must be as many equations as endogenous variables.
- SEM always show that the endogenous variables are correlated with stochastic terms in other equations.
- Classical OLS may not be appropriate because the estimators are inconsistent.

End Of This Chapter

