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Abstract

We survey the weak instrumental variables (IV) literature with the aim of
giving simple advice to applied researchers. This literature focuses heavily
on the problem of size inflation in two-stage least squares (2SLS) two-tailed
t-tests that arises if instruments are weak. A common standard for acceptable
instrument strength is a first-stage F of 10, which renders this size inflation
modest. However, 2SLS suffers from other important problems that exist
at much higher levels of instrument strength. In particular, 2SLS standard
errors tend to be artificially small in samples where the 2SLS estimate is close
to ordinary least squares (OLS). This power asymmetry means the #-test has
inflated power to detect false positive effects when the OLS bias is positive.
The Anderson-Rubin (AR) test avoids this problem and should be used in
lieu of the z-test even with strong instruments. We illustrate the practical
importance of this issue in IV papers published in the American Economic
Review from 2011 to 2023. Use of the AR test often reverses #-test results. In
particular, IV estimates that are close to OLS and significant according to
the #-test are often insignificant according to AR. We also show that for first-
stage Fin the 10-20 range there is a high probability that OLS estimates will
be closer to the truth than 2SLS. Hence we advocate a higher standard of
instrument strength in applied work.
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1. INTRODUCTION

The past 35 years have seen an explosion of applied work that uses instrumental variable (IV)
methods to deal with endogeneity problems. However, work by Bound et al. (1995) has made
applied economists acutely aware that two-stage least squares (2SLS) estimators have poor prop-
erties when instruments are exogenous but weak, meaning they are only marginally significant in
the first stage of 2SLS. In that case, it is now well understood that 2SLS estimates and standard
errors can be very misleading, even in large samples.

"Two particularly poor 2SLS properties have received tremendous attention. First, when instru-
ments are weak, the median of the 2SLS estimator is biased toward ordinary least squares (OLS).
Second, the 2SLS #-test suffers from size inflation, meaning a 5% level z-test may reject a true null
hypothesis at a rate higher than 5%. In the exactly identified case (one endogenous variable and
one instrument), Staiger & Stock (1997) showed that these problems are modest as long as the
F statistic for significance of the instrument in the first stage of 2SLS exceeds 10.

In recent work (Keane & Neal 2023) we explained an additional poor property of 2SLS #-tests
that has not received attention in the prior literature. The #-test suffers from a power asymmetry:
2SLS standard errors tend to be artificially small when the 2SLS estimate is close to OLS and large
when the 2SLS estimate is far from OLS. The practical consequence is that 2SLS estimates that
are near OLS will too often appear significant, even when the true effect is zero. Conversely, the
t-test has little power to detect true values that are far from OLS. Importantly, this power asymme-
try problem remains severe even when the first-stage F is well above levels that are conventionally
deemed adequate, that is, F > 10.

Fortunately, the power asymmetry problem can be avoided by using the Anderson-Rubin (AR)
test (Anderson & Rubin 1949) instead of the t-test. In the one instrument case, the AR test of
Hy:8 = 0 is simply the #-test from regression of the outcome y on the predicted value of the en-
dogenous variable £ obtained from the first stage of 2SLS, where £ = #2 and z is the instrument.!
Ironically, this is the naive mistake we teach beginner students of econometrics to avoid, as it does
not deliver correct asymptotic standard errors for Bass. However, it does deliver the optimal test
for significance of Basts. The AR test has correct size even when instruments are weak, and it
largely avoids the power asymmetry problem.

We illustrate the practical importance of this issue by showing how it affects results from
American Economic Review (AER) papers published from 2011 to 2023. We found 49 replicable
papers where first-stage F was below 50 or not reported, and we found that in 12 of these 24%)
the use of AR rather than the #-test overturns a key result. In particular, we show there is a sys-
tematic pattern whereby 2SLS estimates that are close to OLS are judged significant by the 7-test
but insignificant according to the AR test.?

A key point is that the power asymmetry afflicting the #-test remains severe even if first-stage
Fis well above 10 or above the more refined weak IV test thresholds developed by Stock & Yogo
(2005). It is not just a weak instrument problem, in the conventional sense of the term. Theorists
commonly advocate using AR when instruments are weak (see, e.g., Andrews et al. 2019). The
novelty of our message is that we advocate abandoning the #-test altogether and using AR even
when the instrument is strong. In applications, AR is simple to implement, and it is simple to adapt
AR to heteroskedastic and clustered data.

'We ignore the presence of other exogenous covariates (w) to simplify exposition. Given such w, the AR test
is simply the #-test for the significance of £ in the regression of y on £ and w.

?Four of the 12 papers had multiple instruments, in which case we use the conditional likelihood ratio (CLR)
test, which is a natural extension of the AR approach to the overidentified case.
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Conventional weak IV tests focus on bias and size inflation; however, what applied researchers
really care about is whether 2SLS estimates are more reliable than OLS. In fact, as we show, for
first-stage F'in the 10-20 range typically deemed acceptable by weak IV tests, the chance that 2SLS
will generate an estimate closer to the truth than OLS is remarkably small, unless endogeneity is
very severe. Furthermore, the 2SLS #-test has such poor power that only estimates near OLS are
likely to be significant, due to the power asymmetry. Thus, we argue that more rigorous first-stage
F thresholds should be adopted in applied work.

For clarity of exposition we mostly focus on the single instrument case, with only a brief sec-
tion on multiple instruments. Bound et al. (1995) show that 2SLS bias and -test size problems get
worse with multiple instruments. This has led Angrist & Pischke (2008) and Angrist & Kolesir
(2024) to advocate using only a single instrument. In other work (Keane & Neal 2023) we show
that the power asymmetry problem gets worse with multiple instruments, both for 2SLS and for
generalized method of moments (GMM) #-tests. However, we find that the conditional likelihood
ratio (CLR) test of Moreira (2003), extended to GMM by Kleibergen (2005), can avoid these
problems.

The outline of the article is as follows. Section 2 gives a simple explanation of the weak in-
strument problem, and Section 3 explains weak IV tests. Section 4 explains the power asymmetry
problem. Section 5 explains the AR test: We show how it avoids the power asymmetry problem
that plagues the #-test as well as having other appealing properties. Section 6 discusses the perfor-
mance of 2SLS relative to OLS. Section 7 presents our analysis of AER papers. Section 8 presents
a simple guide for applied researchers, and Section 9 concludes.

2. BACKGROUND ON THE WEAK INSTRUMENT PROBLEM

We begin by reviewing how 2SLS works and explaining the various problems created by weak
instruments. Assume a researcher is interested in a simple structural equation where the outcome
y depends on the single endogenous variable x:

y=xB+u, where cov(x,u)#0. 1.

For simplicity, we call 8 the effect of x on y.> The researcher is concerned that a simple OLS
regression of y on x will give a biased estimate of 8 because x is endogenous, meaning that
cov(x, ) # 0. A classic example is a regression of wages on education, where the structural error
# includes unmeasured ability. If people with higher ability tend to get more education, then
cov(x, 1) > 0, so OLS regression of y on x yields an upward biased estimate of .

Fortunately, the researcher also has data on an instrument z with two key properties: It is ex-
ogenous, meaning it is uncorrelated with the structural error # in the population, and it is relevant,
meaning it is correlated with « in the population. Thus, it is possible to consistently estimate 8 in
Equation 1 using an IV estimator.* We focus on the 2SLS procedure: In the first stage, we regress
x on z to obtain the fitted values &, and in the second stage we regress y on & to consistently
estimate f.

3In most cases there are multiple conceptually distinct effects of x on y. For example, if y is quantity and x is
price, then B may represent the effect of price on demand or supply. Similarly, if y is consumption and « is
income, then B might represent the effect of permanent or transitory income changes. Which effect is iden-
tified by an IV estimator depends on the choice of instrument and often on other aspects of the specification
as well.

*Which effect of x on y is estimated depends on the instrument. For example, to identify 8 in a demand curve,
z must only shift the supply curve. To identify effects of permanent income on consumption, z must induce
highly persistent income differences across individuals.
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We write the first stage of 2SLS, also known as the reduced form for «, as
x=2zmw +e, where cov(z,u) =0, cov(z,e) =0, and 7w # 0. 2.

The instrument z is exogenous if cov(z, #) = 0 and relevant if 7 # 0. The parameter 7 is most
easily thought of as the effect of z on x, but mere correlation is adequate for 2SLS.

Equation 2 decomposes x into two parts: The exogenous part zz is uncorrelated with
the structural error #, and the endogenous part e is correlated with #. Let p = corv(e, ) denote the
correlation between the structural and reduced-form errors. The magnitude of p determines the
severity of the endogeneity problem. x is exogenous if and only if p = 0.

We can substitute Equation 2 into Equation 1 to obtain what is known as the reduced form
for y:

y=@m)B + (Be+u) 3.

Assume for a moment we know 7. We may then obtain an unbiased estimate of g via an OLS
regression of y on z7. This works because the regressor zr is exogenous in Equation 3. That s, z
is uncorrelated with both e and #, and multiplying =z by the constant 7 does not change that. We
call the regression of y on z7 the “infeasible IV” (IIV) estimator.

Of course we do not know 7, so the idea of 2SLS is to replace 7 with the first-stage estimate
# obtained by applying OLS to Equation 2. Then, in the second stage of 2SLS, we regress y on
x7 to obtain Brgrs. The second-stage equation can be written as

y=(@R)B+w, where w=z(r—#)p+ Pe+u. 4.

OLS estimation of Equation 4 does not give an unbiased estimate of B, due to problems cre-
ated by substituting the data-driven function # for the constant 7. We explain this in detail in
Supplemental Appendix A. However, as sample size grows large we have # — 7, and hence
2SLS gives a consistent estimator of 8.

An alternative, but numerically equivalent, way to obtain the 2SLS estimator is to (#) run
an OLS regression of x on z to obtain #; (b)) run an OLS regression of y on z, which, as we
see in Equation 3, gives an unbiased estimate 7 of 7 8; and then (c) estimate 8 as the ratio

Pasis = mB/%. Given a sample of observations {y;, a7, 2:}, i = 1,..., n on the random variables
{y, x, 2}, the 2SLS estimator of f takes the following form:’
g L yN 1 vN .
B B _ N 2imi 2 N il Zitli cov (z, 1)
Prss=— = Yo =g Nt g 2 s
4 N Dzt Zi%i N Doiy Zii cov (2, x)

Clearly, 2SLS is consistent: As N — oo the sample covariance civ(z, #) converges to its true value
cov(z, u) = 0, and cov(z, x) converges to 7a? > 0. So fass converges to the true f.

However, the fact that 2SLS is consistent reveals little about its properties and behavior in
finite samples—including, as we will see, very large finite samples. We now discuss the properties
of 2SLS in finite samples in more detail.

A first point, obvious from Equation 5, is that, in finite samples, the 2SLS estimate Bosis departs
from the true B solely due to finite sample covariance between the instrument and the structural
error, cov(z, u) # 0. Although we have that cov(z, ) = 0 in the population, it will never be zero in
a sample. As we will see, finite sample covariance between the instrument and the structural error
is the root cause of several problematic finite sample properties of 2SLS.

5In the second stage of 2SLS, the usual OLS formula gives Bys1.s = 8 + cov(z#, u)/var(z#). To see that this is
equivalent to the expression in Equation 5, note that cov(z, x) = # var(z) because x = z# + v where civ(z, v) =
0. Then we can write cdv(z, #)/cov(z, x) = fcov(z, 1) /7 cov(z, x) = cov(zR, u)/var(zR).
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To explain, it is useful to decompose the first-stage reduced-form error ¢ into parts that are
correlated and uncorrelated with the structural error u:

e = pou +1n, where cov(n,u) =0, cov(z,n) = 0. 6.

Here, py = po./o, controls the severity of the endogeneity problem. The covariance between the
instrument and endogenous variable in a finite sample is

cov(z,x) = mwvar(z) + cov(z, n) + pocov(z, u). 7.

Thus, cov(z, x) has three parts: “good” covariance due to exogenous variation in x generated by z;
“bad” covariance due to sample correlation of z and #, the endogenous part of x; and “accidental”
covariance due to sample correlation of z and 7, an exogenous part of x.

In order to explain some of the problematic finite sample properties of 2SLS, it can be use-
ful to substitute Equation 7 into Equation 5 and write fsis — f in the following instructive
form:

A cov(z, i) cov(z, 1)
Basis — B = — ~ =— p ~ . 8.
wvar(z) + cov(z,e)  mwvar(z) + cov(z, n) + pocov(z, u)

Note that the analogous expression for OLS is fors — 8 = cdv(x, z) /var(x). Thus, under standard
assumptions, the bias in OLS is povar(u)/var(x).

2.1. Four Problematic Finite Sample Properties

Given this background, we now list four problematic finite sample properties of 2SLS, along with
a simple explanation for each. We focus on the single instrument case.

2.1.1. Problem 1. The mean and variance of the 2SLS estimator do not exist, so we can-
not define bias. This is simply because it is possible to have a sample realization of cov(z,x) =
mvar(z) 4 cov(z, e) ~ 0, sending the denominator of Equation 8 to zero and causing fosis to
explode. Thus, we will focus instead on the median bias of 2SLS.

2.1.2. Problem 2. The median of By is biased in the direction of OLS if the instrument is
weak. To see this, it is useful to first consider the case where the instrument is strong, meaning
we can be very confident that cév(z,x) is the same sign as cov(z, x) in any sample. Then, from
Equation 5, we see that the sign of the sample realization cév(z, ) completely determines whether
325Ls lies above or below the true 8. Of course we expect the random variable cdv(z, %) to be
positive in half of the samples, so the 2SLS estimator is median unbiased.

In contrast, if the instrument is weak, civ(z, x) may take the wrong sign in some samples, which
induces median bias. To see this, consider the case of po > 0, so the OLS bias is positive, and assume
cov(z, %) > 0.9 Then, from Equation 7, we see that a large negative realization of cov(z, #) can drive
cov(z,x) negative. In that case both the numerator and denominator of Equation 5 are negative,
and hence Brs1s > B. Thus, we get Brsis > B in more than half of samples, and the median of
Bosis is biased in the direction of OLS (positive).

2.1.3. Problem 3. The distribution of B>g1.5 exhibits skewness and fat tails. To see why, assume
again that cov(z,x) > 0 and the instrument is strong enough that we are confident that cov(z,x) > 0,
so the denominator of Equation 8 is positive. Take the case pg > 0, so the OLS bias is posi-
tive. Then, a negative realization of cov(z, #) has two effects: (#) It generates a Basis — B < 0, and

This is without loss of generality, as we can always normalize 2 so that 7 > 0 and hence cov(z, ) > 0.
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(b) it shrinks the denominator of Equation 8, causing that negative estimate to be inflated.” The
reverse happens if cov(z, ) > 0. Therefore, estimates that lie above (below) the true 8 are reined
in (inflated), and the distribution of Bys1s — B is skewed to the left?

2.1.4. Problem 4 (power asymmetry). 2SLS generates artificially low standard errors in sam-
ples where Bos1s is shifted toward Bors, and artificially high standard errors in samples where Bosis
is shifted away from Bovs. This was first noted by Keane & Neal (2023).

"To understand this problem, consider the 2SLS standard error formula:

A 153 A
se(Basis) = % where 65515 = V(N —2)7! Z(Yi — x;Prsis)’s 9.
TSS,, =N - Riz -viar(x) = Neov(z, x)? Jvar(z) = Natvir(z). 10.

Thus, the 2SLS standard error se(Bssrs) depends on two components: 8;sLs, the standard error of
regression, and 7SS, the total variance of x explained by the instrument z. The 2SLS standard
error tends to be smaller when Bag; s is close to BoLs for two reasons: First, the standard error of
regression g is a quadratic function of BZSLS that is minimized at BOLS. This is simply because
OLS minimizes the sum of squared residuals in a regression of y on x. Therefore any force that
shifts Bosrs toward Bors will reduce the standard error of the 2SLS regression. This is true even
in large samples.

Second, the term 1/,/T'SS, , also tends to be smaller when Bosis is close to BoLs. Without loss
of generality, assume cov(z, x) > 0, and to make the argument transparent, assume the instrument
is strong enough that we can be very confident that cov(z,x) > 0. Then it follows that

1. As we see in Equation 7, a positive sample realization of pocov(z, %) drives up cov(z, x) and
hence TSS,., which in turn drives down the 2SLS standard error.

2. As we see in Equation 8, a positive sample realization of pycov(z, #) shifts Brsis in the
direction of the OLS bias, determined by the sign of pg.

Thus, in samples where the instrument is spuriously highly correlated with the endogenous
variable, due to sample covariance of z with %, the 2SLS estimate is shifted toward OLS and the
2SLS standard error is spuriously small. In fact, as we discuss below, when Bosis is close to Bors,
its standard error is actually less than the ITV estimator. By the same logic as above, when fasrs is
far from Bors, its standard error is inflated.

Thus, 2SLS has the unfortunate property that it generates artificially low (high) standard errors
in samples where Basis is most shifted toward (away from) OLS. This association between 2SLS
estimates and their standard errors has important consequences for statistical inference. It means
that the 2SLS #-test has artificially inflated power to judge estimates to be significant when they
shift in the direction of the OLS bias. Conversely, the -test has poor power to detect true negative
effects when the OLS bias is positive.

2.2. Does a Large Sample Size Solve These Problems?

A large sample size does not solve the power asymmetry problem, as 6,g1s remains a quadratic
function of ;s even in large samples. However, as explained above, the other problems with

7 A large negative c6v(z, #) may drive cov(z, x) to near zero, generating a large negative outlier.
8Things get worse if we allow for the possibility of sufficiently large negative realizations of cjv(z, ) that
cov(z,x) is driven negative, as this generates large positive outliers as well.
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2SLS are caused by finite sample correlation of the instrument z with the first-stage error
e= polt + 1.

The sample covariance between the instrument z and the endogenous variable x partly re-
flects their true relationship zs, but it is contaminated by spurious correlation that arises because
cov(z, e) # 0 in finite samples (see Equation 7). Thus, it is natural to assume these problems will
vanish in samples large enough that civ(z, ¢) ~ 0.

The error in this logic is that, as sample size grows larger, the value of 7 that s likely to render
z significant at the 5% level in the first stage of 2SLS gets small exactly as fast as cov(z, €) gets small.
As a result, if z is only significant at the 5% level (and not better), cov(z, e) remains nonnegligible
relative to wvar(z) regardless of sample size. Thus, a large sample alone will not solve the problem.
This is a key insight of the weak IV literature [see Staiger & Stock (1997), who develop weak IV
asymptotics where 7 shrinks at a +/N rate].

2.3. What Is a Weak Versus a Strong Instrument? Why Does It Depend on F?

At this point we can give intuitive definitions of weak and strong instruments. An instrument is
weak if wvar(z) is small enough that cov(z, ¢) remains nonnegligible relative to wvar(z) even in
large samples. Conversely, an instrument is strong if wvar(z) is large enough that we are con-
fident that |7 var(z)| > |cov(z, e)|. In other words, we are confident that the sample correlation
between x and z mostly reflects their true relationship and not a spurious correlation arising be-
cause ci#7(z, ¢) # 0 in finite samples.” It is simple to see this is equivalent to requiring the first-stage
F to be large in some sense.

The “true” first-stage F that we could construct if we observed 7, var(z), and o in Equation
2 is defined as

P NUTET) _ e 11.
e a@

Note that |7 var(z)| > |cov(z, e)| can be rewritten as

. A 7|6, .
|| - var(z) > 6.6, - |corr(z,e)| — | &| 2> Jedr(z, e)|.
e

If the instrument z is valid, we have corr(z, e) = 0, so cd@ir(z, ¢) converges to zero at a /N rate, and

|cd (2, e)| is bounded in probability by k/+/N for a positive constant & > 0. Thus, we have
Eug[o > ko
6. VN’

Finally, substituting the true values for 6, and 6, and squaring both sides, we obtain

N e o PN 2; > k.
Thus, our intuitive notion of wanting confidence that | var(z)| > |cdv(z, €)| corresponds to a de-
sire to have a first-stage F-statistic that is “big” in some sense. As F = NR? /(1 — R?), a key insight
is that the properties of 2SLS do not depend on N or first-stage R? per se, but only on how they
combine to form F. The weak IV testing literature asks just how big the first-stage F needs to be
for 2SLS to have nice properties. We explain these tests next.

7T20
g,

OTf | var(z)| > |c6v(z, e)], the mvar(z) term in the denominator of Equation 8 dominates the cov(z, €) term.
Then Equation 8 reduces to just Brsis — B ~ cov(z, u)/mvir(z), which is much simpler to deal with (as it
resembles the expression for OLS). Under a fixed instrument assumption, the asymptotic distribution of g1 g
is approximately normal and centered on B. So 2SLS is approximately unbiased, and normality is a decent
approximation to its sampling distribution.
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Table 1  First-stage F values required to achieve different objectives

True F F critical value Max #-test size
1.82 8.96 15%
2.30 10.00 13.5%
5.78 16.38 10%

10.00 23.10 8.6%
29.44 50.00 6.4%
73.75 104.70 5%

3. A SIMPLE GUIDE TO WEAK INSTRUMENT TESTS

If the instrument is weak, the distribution of the 2SLS estimator is nonnormal, which renders the
t-test unreliable. One problem that has received a great deal of attention is #-test size inflation:
If the instrument is weak and endogeneity is severe, a 5% level two-tailed #-test of a true null
hypothesis Hy:8 = 0 will reject at a rate higher than 5%. In an influential paper, Stock & Yogo
(2005) derived levels of first-stage sample F' that are sufficiently high to give confidence that two-
tailed #-test size inflation is modest.

To develop these sample F' thresholds, Stock & Yogo utilized a formula for power of the #-test
in terms of true F, p, and true . We explain this formula in detail in other work (Keane & Neal
2023, appendix A). Using this formula to evaluate power at 8 = 0 gives the size of the test (i.e.,
the probability of rejecting Hy:8 = 0). Size depends on p, so Stock & Yogo focus on the maximal
size distortion, which occurs when p = t1—that is, when endogeneity is extremely severe. We
present some key calculations in Table 1.

For example, if the true F'is 1.82, then a 2SLS two-tailed 5% level z-test will reject the true null
Hy:8 = 0 at the inflated rate of 15% in the worst-case scenario where endogeneity is extremely
severe. So the maximal size distortion of the test is 10%. Suppose instead you want a maximal
size distortion of just 5% (i.e., your 5% t-test rejects Hy:f = 0 no more than 10% of the time);
then you need F = 5.78. By requiring true F to be large enough, one can render the maximal size
distortion as small as desired.

Of course, we cannot observe the true F but only the sample F statistic for the significance of
z in the first stage, defined as F = N#262/62. Therefore, the weak instrument testing literature
uses sample F' to make inferences about true F. Unfortunately, because F equals var(z7) /o2 times
a factor of N, the sample F is not a very accurate estimate of true F, and it does not get more
accurate as sample size increases. In particular, regardless of sample size, sample F is a draw from
a noncentral F distribution with noncentrality parameter equal to the true F. For example, to be
confident (at the 95% level) that F is at least 1.82, we need F to be at least 8.96. Henceforth we
write F5o, = 8.96.

Staiger & Stock (1997) proposed a popular rule of thumb that first-stage F' should be at least
10 to be confident the 2SLS estimator is well behaved.!® This advice has been widely adopted
in practice and presented in textbooks. For example, Stock & Watson (2015, p. 490) write: “One
simple rule of thumb is that you do need not to worry about weak instruments if the first stage
F-statistic exceeds 10.” As we see in Table 1, a first stage F of 10 gives 95% confidence that F is
at least 2.3, and this implies a maximal two-tailed #-test size of 13.5%.

Next, to better understand how weak instrument tests work in practice, we implement a sim-
ple simulation experiment. Consider a model with a single endogenous variable x and a single

19Note that in the single instrument case this corresponds to a ¢ of 3.16 (p = 0.0008).
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Figure 1

Rejection rate of Ho: = 0 using a 5% two-tailed 2SLS #-test, for different values of FF and p. Abbreviations:
2SLS, two-stage least squares.

exogenous instrument z. We focus on this simple case as it clarifies the key ideas, and because the
single instrument case is very common in applied practice. We have

yi = Bxi +u,
x; = wz; +e¢; where ¢; = pu; + /1 — p2n;, i=1,...,N, 12.
1 ~ AN, 1), 1; ~iidN(0, 1), 2 ~ iid N, 1).

In this model p € [—1, 1] controls the degree of endogeneity, while 7 determines the
strength of the instrument.!! We normalize o, = o, = 1 so that F = Nz? and the OLS bias is
p/(1 + 7?) ~ p for small . We generate artificial data sets of size N = 1,000 and consider six
different levels of = that generate the six levels of instrument strength that are shown in Table 1.12
We set true B = 0 and let the degree of endogeneity p vary in small increments from 0 to 1.

For each level of F and p we simulate 10,000 data sets from the model in Equation 12 and
apply 2SLS to the simulated data. We summarize the results in Figure 1, which shows the rate at
which a two-tail 5% level ¢-test rejects the true null Hy:8 = 0 in each case.

The most striking aspect of Figure 1 is how the rejection rate is strongly increasing as the de-
gree of endogeneity p increases. The 2SLS #-test is not pivotal, as its size depends on the nuisance
parameters p and F. As we noted earlier, Stock & Yogo (2005) calculate worst-case (maximal) re-
jection rates over all values of p. As Figure 1 shows, the worst case corresponds to p near %1, so
the endogeneity problem is very severe (the figure is symmetric for p < 0). The results in Figure 1
agree closely with Stock & Yogo’s analysis. For example, for F = 5.78 they predict a worst-case
rejection rate of 10%, and we obtain 9.7%.

However, Figure 1 shows that a focus on p = %1 is not innocuous, as rejection rates vary
substantially with p. In the next section we show how the power asymmetry that we discussed in
Section 2 generates this pattern and explain why it is a serious limitation of the z-test.

T Exogenous covariates may be partialed out of y and x without changing anything of substance. The variance
normalizations are without loss of generality as one can standardize y, x, and z.

These are = = 0.0427, 0.0480, 0.0760, 0.1000, 0.1716, and 0.2716—for example, F = Nm? =
1,000(0.10)* = 10.
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Standard error plotted against f for (4) two-stage least squares (2SLS) and (b) infeasible instrumental
variables (ITV) with = known. In each case, F = 2.3, 8 = 0, and the ordinary least squares (OLS) bias is
E(BoLs) = 0.6. The red dots indicate Hy:8 = 0 rejected at 5% level. Runs with standard error >4 are not
shown.

4. THE POWER ASYMMETRY OF THE 2SLS z-TEST

As we explained in Section 2, 2SLS standard errors tend to be smaller when the estimate is shifted
toward the OLS bias. Figure 2 illustrates this power asymmetry phenomenon. We consider the
case of F = 2.3 (Fs¢, = 10), which corresponds to Staiger & Stock’s rule of thumb for acceptable
instrument strength, and set = 0 and p = 0.6, so the OLS bias is 0.6. We then simulate 10,000
data sets from this data-generating process (DGP) and apply 2SLS and IIV to each.

Figure 24 plots the 2SLS standard error se(Basis) against the 2SLS estimate Basis for each
data set. The strong association between 2SLS estimates and their standard errors is apparent:
2SLS estimates that are close to OLS appear to be much more precisely estimated. However, this
precision is spurious; it arises because sample covariance of the instrument with the structural
error is relatively high in these data sets, making the instrument appear spuriously strong. As we
explained in Section 2, when cov(z, x) is small—it is only 0.048 in this DGP—even a small civ(z, )
has big effects!

As a benchmark, Figure 2& reports results for the IIV estimator we could construct if we
knew m. This is simply an OLS regression of y on z7. In contrast to 2SLS, an OLS regres-
sion generates no association between the estimates and their standard errors (see Supplemental
Appendix B). In fact, across all data sets the IIV standard errors are tightly clustered around
0.659 = 0,/ (N7?02)V* = 1/4/1,000 - (0.048), the true standard error of the IIV estimator. The
empirical standard deviation of the IIV estimates across the 10,000 runs is 0.666, so the IIV
standard errors are an accurate reflection of uncertainty.

Strikingly, Figure 24 shows that when the 2SLS estimate is near OLS, the 2SLS standard
error tends to be far below 0.659. In fact, the median 2SLS standard error when fsi s is close to
E(Bors) = 0.6 is only 0.38! It is impossible to gain precision by ignoring information about 7, but
this is what 2SLS seems to do. The 2SLS standard error is spuriously small when f,sps & 0.6 due
to sample correlation of the instrument with the structural error.

In Figure 22 we shade in red cases in which the 2SLS estimate is significant according to a
two-tailed 5% level t-test. A total of 4.9% of estimates are significant, so there is no size inflation.
However, all significant estimates are near E (Bors), due to the power asymmetry problem. The
median significant estimate is 0.70, with a median standard error of 0.29. For IIV, in contrast,
significant estimates are equally distributed to the left and right of 8 = 0, as expected.
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Figure 3

Standard error of Bg1 5 plotted against 51 g with () F = 10 (Fyo, = 23) and () F = 29.4 (Fso, = 50). In
both panels, true 8 = 0 and the OLS bias is Bors = 0.6. Red dots indicate Hp:8 = 0 rejected at 5% level.
Runs with standard error >1.5 are not shown. Abbreviations: 2SLS, two-stage least squares; OLS, ordinary
least squares.

Next, we show that the 2SLS power asymmetry persists at much higher levels of instrument
strength. Figure 34 shows the case of F = 10 (Fs¢, = 23), again setting 8 = 0 and p = 0.6. The
association between 2SLS estimates and their standard errors is still quantitatively important: In
fact, the Spearman’s 7, is —0.576 and Kendall’s 7 is —0.511.

The red dots in the figure again indicate cases in which Byss differs significantly from zero
according to a two-tailed 5% z-test. A total of 5.3% of estimates are significant, so again the size
distortion is minor. However, due to the negative association between the 2SLS estimates and
their standard errors, all rejections occur when Brsis > 0, and none occurs when Bsrs < 0. Only
the estimates most shifted toward the OLS bias are ever judged significant.

Figure 3b shows the case of p = 0.6 and F = 29.4 (F5¢, = 50). Even at this high level of in-
strument strength, which is far above conventional weak IV testing levels, the negative association
between se(Bas1s) and fsts persists. In fact, Spearman’s 7, is —0.92 and Kendall’s  is —0.75, show-
ing that the power asymmetry is not just a weak instrument phenomenon. The two-tailed 2SLS
t-test again rejects at close to the correct 5% rate (4.6%), but 98% of those rejections occur when
Basrs > 0. This asymmetry in positive versus negative rejections is a direct consequence of the
power asymmetry. The bottom line is that only 2SLS estimates shifted strongly toward OLS are
ever likely to be judged significant.

Thus, even with strong instruments, almost all estimates judged significant by two-tailed
t-tests are shifted toward OLS and not symmetrically distributed around the true value. A key
implication, explored in detail in Supplemental Appendix E, is that size distortions in one-tailed
t-tests are much greater than in two-tailed tests. For example, in Figure 34 a one-tailed 2.5% test
of Hy:B8 < 0 rejects at a 5.3% rate. Applied researchers rarely use one-tailed tests, as they expect
two-tailed tests to be symmetric (so that a two-tailed 5% test is equivalent to a one-tailed 2.5%
test). However, that is completely false with 2SLS.

We explained the source of the power asymmetry in Section 2, and Figure 4 illustrates it
graphically, for the case of F =10, 8 = 0, and p = 0.6. Panel # shows that se(Bosrs) is smaller in
samples in which cdv(z, #), the sample covariance between the instrument and the structural error,
is greater. Panel 4 shows that Basis is larger in such samples. The combination of these two forces
causes xe(ﬁszs) to be smaller when /§25Ls is shifted toward OLS.
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Figure 4

The figure shows se2SLS) — se(IIl) and fs; s plotted against cév(z, u), with F = 10 and p = 0.6. The red
dots indicate fys; g significant at 5% level. Runs with se(2SLS) — se(IIV) > 1.5 or Bygrs >2 or <—2 are not
shown. Abbreviations: 2SLS, two-stage least squares; IIV, infeasible instrumental variables.

The DGP in Figure 4 has cov(z, x) = 0.10. Hence, sample realizations of cov(z, #) that are large
relative to 0.10 (i.e., roughly 0.05 or above) generate values of Bsis thatare heavily shifted toward
OLS, with spuriously small standard errors that are well below se(II}).

Table 2 gives a broader view of the power asymmetry by showing Spearman’s 7, between
se(ﬁZSLS) and Bs1 for different levels of F and p. The table reveals how the negative association
between 2SLS estimates and standard errors gets stronger as p increases.

We can now understand why #-test rejection rates increase with p in Figure 1. At low levels
of endogeneity, the #-test has very low power unless instruments are quite strong, so it rejects
Hy:8 = 0 at rates well below 5%; but at higher levels of endogeneity, the #-test starts to get sub-
stantial spurious power from the finite sample correlation between z and #, which causes estimates
shifted in the direction of OLS to have low standard errors. As p increases, the z-test derives more
power from this source, causing it to reject Hy:8 = 0 more frequently. Size inflation only appears
when p > 0.6, as below that the #-test is underpowered.

We now examine the power of the 2SLS #-test in more detail by simulating the probabilities
of rejecting Hy: = 0 when it is false. We consider cases in which true g is set to 0.30 or —0.30
in Equation 12. Importantly, these would be quantitatively large but plausible values in typical
empirical applications, as they imply that a 1 standard deviation change in x induces roughly a
0.30 standard deviation change in y. The results are reported in Table 3.

A key result is that the 2SLS #-test has almost no power to detect a sizeable true negative effect
if the OLS bias is positive, unless the instrument is very strong. For example, as we see in Table 3,
in the F = 2.3 case, widely viewed as an acceptable level of instrument strength, the probability
of rejecting the false null Hy:8 = 0 is only 0.2% when true g is —0.3 and p = 0.50. Increasing
instrument strength to F' = 10 only increases power to 2.3 %. The power asymmetry (the negative

Table 2 Spearman rank correlations (7;) between se(B2s1.s) and Basts
Spearman correlations ()
Population F Fso, p=02 p=05 p=038
23 10 —0.133 —0.359 —0.576
10 23.1 —0.310 —0.687 —-0.916
73.75 104.7 —0.350 —0.720 -0.917
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Table 3 Power of 2SLS #-test: rejection of false null hypothesis Hy:8 = 0 (%)

B=03 B=-03
Population F Fso, p=0 p=05 p=1 p=0 p=05 p=1
2.30 10.00 24 13.0 25.1 2.2 0.2 3.2
5.78 16.38 7.2 18.8 263 7.2 0.5 0.8
10.00 23.10 13.4 23.7 28.9 13.3 2.3 0.2
73.75 104.7 71.4 67.8 65.1 71.9 78.0 89.1

association between 2SLS estimates and standard errors) drives this result, as negative estimates
have inflated standard errors if the OLS bias is positive.

We emphasize that if an instrument is strong enough to pass the Stock & Yogo’s tests it is safe
to assume that size inflation in two-tailed 2SLS #-tests is modest, and that 2SLS is approximately
median unbiased. As we show in Supplemental Appendix F, for all values of F considered in
this section, median bias in 2SLS is negligible, or at least modest, regardless of the degree of
endogeneity. Furthermore, size inflation was not a problem in any simulation in this section.

The power asymmetry is a completely separate problem from bias and size inflation, and it re-
mains serious at much higher levels of instrument strength: 2SLS estimates appear spuriously
precise in samples where they are most shifted in the direction of the OLS bias. In the next
section we describe a way to deal with this problem.

5. THE ANDERSON-RUBIN TEST

Fortunately, there is a simple solution to the problematic properties of the 2SLS z-test, which is
to use the AR test instead (Anderson & Rubin 1949). In the single instrument case, the AR test of
Hy:B = 0 is simply the #-test from the regression of y on z#, where # is the first-stage estimate of
7. This is simply the second stage of 2SLS run by hand, so of course it generates the same estimate
Basis, but the standard error of this regression is

A~

se(AR) = \/% where Gar = V(N — 2)~! Z(yi — () osis ). 13.

The AR test is simply zar = Basrs/se(4R). Comparing Equations 13 and 9, we see the only dif-
ference is that 6 replaces 6,s1s. As we explained in Section 2, an important source of the 2SLS
t-test power asymmetry is that ;g1 is a quadratic function of Bosis that is minimized at Bos. In
contrast, 6xg is minimized at Bgrs, and its magnitude does not depend on the distance of Basis
from I§0LS, as we show in Supplemental Appendix C. Thus, replacing 62515 with 65r removes
an important source of the power asymmetry.

We illustrate this in Figure 5, which compares 2SLS and AR standard errors in the case of
F=10, 8 =0,and p = 0.6. Notice there is still a negative association between se(4R) and Basrs,
which arises because 7SS, tends to be larger when Basis is close to OLS (see Section 2). However,
the association is much weaker than for the 2SLS standard error. As a result, the AR test is far less
subject to the power asymmetry problem: It generates rejections of the true null 8 = 0 roughly
symmetrically distributed on the positive and negative side.

Table 4 compares how frequently the #-test and AR test reject a true null hypothesis
Hy:B = 0 at different levels of instrument strength. We again set p = 0.60, which is the best
case for two-tailed t-test size distortion.”® If F = 10, a 5% two-tailed t-test rejects Hy:8 = 0 at a

13Tn Figure 1 we see that #-test size is close to 5% when p = 0.6 regardless of instrument strength. At lower
levels of p size falls below 5%, and at higher levels of p size is inflated. If the instrument is weak p = 0.6 is
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2SLS and AR standard errors plotted against B,g1 5. Panel 2 shows 2SLS #-test rejections, and panel & shows AR test rejections. In each
case, true § =0, F =10, and p = 0.6. The red dots indicate Hy:8 = 0 rejected at 5% level. Runs with standard error >4 are not shown.
Abbreviations: 2SLS, two-stage least squares; AR, Anderson-Rubin.
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5.3% rate, so size distortion is trivial. However, all rejections occur when Brsis > 0. Therefore,
the size of a one-tailed 2.5% level #-test of Hy: < 0is 5.3%. Due to the power asymmetry, size
distortions in one-tailed #-tests are large even with strong instruments. The mean significant Basts
is 0.483, as the significant estimates tend to be close to OLS. The z-test power asymmetry is severe
even if we increase instrument strength to the high level of F = 74. Then size is 4.7%, but 83%
of rejections occur when fs1.5 > 0. The power asymmetry is not a weak instrument problem.

In contrast, the AR test rejects at exactly a 5% rate at all levels of instrument strength, and as
long as the first stage F'is at least 10, almost exactly half of those rejections occur when the estimate
is positive. In the F' = 2.3 (F5¢, = 10) case, the AR test also exhibits a power asymmetry, as 70% of
rejections are positive. However, this is much milder than for the #test, and the problem vanishes
quickly as instrument strength improves.

Consider the implication of these patterns if there is publication bias, so that only estimates
significant at the 5% level are published. If researchers rely on the 7 test, it will appear as if there
is a consensus that B is positive; but if researchers rely on the AR test, roughly half of studies
will conclude B is positive and half will conclude it is negative, and the literature as a whole will
correctly conclude that there is no clear evidence that 8 is nonzero.

Figure 6 illustrates these ideas graphically. Panels # and & show the density of rejections of the
true hypothesis g = 0 using the z-test (black line) versus the AR test (red line). We set p = 0.60
so that E(Bors) = 0.60. As we see, essentially all #-test rejections occur when the 2SLS estimate

Table 4 Anderson-Rubin (AR) versus #-test rejection rates, Hy:8 = 0, case of p = 0.6

t rejects, t rejects, E(ﬁZSLS) AR rejects, AR rejects,
Population F Fso, Basis >0 | Basis <O if ¢ rejects Basis > 0 Basis < 0
2.30 10.0 0.051 0.000 0.741 0.036 0.013
10.00 23.1 0.053 0.000 0.483 0.025 0.025
29.44 50.0 0.045 0.001 0.303 0.025 0.025
73.75 104.7 0.039 0.008 0.114 0.025 0.025

the Goldilocks level of endogeneity, so the #-test derives just enough spurious power from sample correlation
between the 2z and # to reject Hy:B = 0 at about a 5% rate.
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Frequency of rejecting Ho: = 0 as a function of fs15. () F = 10 (F5o, = 23), true = 0, and the OLS bias
is BoLs = 0.6. (b) F = 29.4 (Fs¢, = 50), true B = 0, and the OLS bias is BorLs = 0.6. (¢c) F = 10 (F5o, = 23),
true B = —0.20, and E(Bors) = 0.40. (d) F = 29.4 (Fso, = 50), true f = —0.20, and E(foys) = 0.40.
Abbreviations: 2SLS, two-stage least squares; AR, Anderson-Rubin; OLS, ordinary least squares.

is positive (in the direction of the OLS bias), even in the strong instrument case of F = 29.4
(Fs% = 50). In contrast, the AR test generates balanced positive and negative rejections.

Panels ¢ and d of Figure 6 show what happens if we set true § = —0.20. This is a large effect in
typical empirical applications, as it means that a 1 standard deviation change in x induces roughly a
—0.20 standard deviation change in y. The striking result is that the #-test has essentially no power
to detect a true negative effect of this magnitude in the F = 10 (F9 = 23) case. Even in the quite
strong instrument case of F = 29.4 (F5¢, = 50), it only detects a significant negative effectin 7.6%
of cases, which is hardly informative as this scarcely exceeds the 5% size of the test. In contrast,
AR detects a significant negative effect in 22.8% of cases. Therefore, the AR test has far better
power to detect true negative effects than the #-test.

The practical implication of this result is serious: In an archetypal application of IV, one seeks
to test if a policy intervention has a positive effect on an outcome, but a confound arises because
those who receive the intervention tend to be positively selected on unobservables. In such a
context, even if instruments are strong by conventional standards, the 2SLS #-test will have little
power to detect true negative effects. Thus, the use of the #-test in policy evaluation contravenes
the principle of primum non nocere [first, do no harm).

The usual suggestion of the weak IV literature is to use AR in lieu of the #-test when the
instrument is weak, because the AR test is robust—i.e., it has correct size regardless of instrument
strength. However, we argue that the power asymmetry that plagues the 7-test is a serious problem
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even when instruments are strong. Hence we argue that the #-test should be abandoned in IV
applications generally, and that AR should be used even with strong instruments.

Next, we give some general observations on the AR test. First, it is very easy to implement.
In the one instrument case, the AR test of Hy:f = 0 is simply the #-test obtained by running
2SLS by hand and testing for significance of the fitted endogenous variable & in the second stage.
Ironically, students have been taught to avoid doing this for years (e.g., Angrist & Pischke 2008,
p. 140; Woolridge 2012, p. 529).1%

Equivalently, the AR test is the #-test from the reduced-form regression of y on the instrument
z and the exogenous controls. This is identical to the #-test from regressing y on z# by hand, as
multiplication by the scalar # does not alter the statistical significance of 2.’

Second, in the one instrument case, the AR test is also equivalent to the #-test from the regres-
sion of y on 7z, the IIV estimator one could construct if one knew 7. This may seem remarkable,
but it stems from the fact that regressions of y on z, 7z, and # z yield identical z-stats. Therefore,
AR is optimal and there is no good argument for using any other test. Moreira (2009) shows that
AR is the uniformly most powerful unbiased test.

Third, with heteroskedastic or clustered data one should implement AR using a robust #-test to
check for the significance of 27 in the second stage of 2SLS (or, equivalently, of z in the reduced-
form regression of y on z). Again, the AR test is not harder to implement than a conventional
t-test, as one uses the exact same methods to obtain a robust test. In Supplemental Appendix D
we show that our conclusions about the superior performance of the AR test carry over to DGPs
with hetereoskedasticity/clustering. Moreira & Moreira (2019) show that the optimality of AR
carries over to these settings.

Fourth, one can use the AR test to form optimal confidence intervals. The standard error se(4R)
obtained by regressing y on z# by hand does not give a valid confidence interval, and neither
does the “correct” 2SLS standard error se(Bosrs) calculated by Stata. The distribution of BasLs is
nonnormal in finite samples, meaning that valid confidence intervals cannot be symmetric. The
correct procedure is called inverting the AR test, and it can be described as follows.

Assume that Bsrs > 0. Regress y — b on & and find the smallest value of ;, that renders &
insignificant at the 5% level. This #;, is the lower bound of the 95% AR confidence interval. If
by, > 0, the estimate is significantly different from zero at the 5% level. Next, regress y — by& on
# and find the largest value of by such that & is insignificant at the 5% level. This gives the upper
bound of the 95% confidence interval. Section 8 shows how to do this in Stata.

If the instrument is very weak, so that first-stage ' < 3.84, then a 95% AR confidence interval
for B is unbounded. As Dufour (2004) notes, this is not a problem with AR but rather an accu-
rate reflection of uncertainty. If ' < 3.84, we do not have 95% confidence that the instrument is
significant in the first stage, so we lack 95% confidence that the model is identified. It is an odd
property of the #-test that it gives a bounded confidence interval in this case. In fact, if your first
stage I is that small you should not be running 2SLS anyway!

4For example, Woolridge (2012, p. 529) states: “You should avoid doing the second stage manually, as the
standard errors and test statistics obtained in this way are not valid.” Instead, students are advised to let Stata
construct the 2SLS residuals 2 =y — xBas1.s and use these to estimate the asymptotic variance of Bosis, as in
Equation 9. This gives asymptotically correct standard errors, which have strange properties in finite samples
(as we have seen). It is worth noting that 7 is not a prediction error like an OLS residual, as we would never
predict y by multiplying endogenous x by Bs1.s, which is designed to capture the impact of exogenous changes
in x. That is why an R? based on these residuals is meaningless.

15Recall that the reduced from is y = z(87) + (Be + u) = z€ + v, where £ = . The AR test judges fsr.g to
be significant if 2 is a significant predictor of y in this regression. A valid instrument z must satisfy 7 # 0 and
cov(z, v) = 0, so a test of the hypothesis Hy:6 = 0 is also a test of Hy:8 = 0.
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Frequency of rejecting Ho:8 = 0 as a function of B,sr.g, with F = 10, 8 = 0, and E(BoLs) = 0.6.
Abbreviations: 2SLS, two-stage least squares; AR, Anderson-Rubin; OLS, ordinary least squares.

Fifth, with multiple instruments the AR test of Hy:8 = 0 is simply the joint F test for significance
of the vector of instruments in the reduced form. However, it is not optimal. Instead, Moreira
(2003) shows that the CLR test is the uniformly most powerful unbiased test (given homoskedastic
data). The AR and CLR tests are equivalent in the single instrument case. Finlay & Magnusson
(2009) provide a Stata command for a heteroskedasticity-robust version of CLR developed by
Kleibergen (2005) and to invert it to form confidence intervals. We explain CLR in detail in other
work (Keane & Neal 2023), but here we continue to focus on the single instrument case in the
interest of expositional simplicity.

Finally, we consider some proposed alternatives to the AR test. A fair summary of the advice
commonly given to applied researchers is to view 2SLS results as reliable only if () F > 10, (b) the
t-test is significant, and (c) the AR test is also significant, providing a robustness check (see Angrist
& Pischke 2008, p. 212). In Figure 7 we compare this procedure, which we denote r+F+AR, to
simply relying on the AR or #-test. These results are for the case of F =10, 8 = 0, and p = 0.60.
As before, the red line plots the density of estimates that are significant according to AR, and
the black line plots the #-test results. The blue dotted line shows the # + F+AR test results. This
procedure suffers from a severe power asymmetry, similar to the z-test. It succeeds in reducing the
frequency of positive rejections, as unlike the z-test it does not suffer from inflated power to detect
false positives, but it has no better power on the negative side than the 7-test.

Recently, Lee et al. (2022) have advocated the ¢F test, which increases the 7-test critical value
to eliminate worst-case size distortion. This is shown by the green dotted line. As we see, the #F
test has very low power and does not solve the power asymmetry problem. Figure 1 shows how
t-test power depends on both F and p. Lee et al. (2023) advocate a VF test, which increases or
reduces #-test critical values based on F and p, so size is always 5%. However, this adjustment also
fails to address the power asymmetry problem.

Finally, as we see in Figure 1, #-test size inflation does not arise unless endogeneity is strong
(p > 0.60). Angrist & Kolesir (2024) have defended the #-test on this basis. We argue that the
results in Figure 1 are not comforting, as they reflect the very poor power properties of the #-test,
which the AR test avoids.

6. PERFORMANCE OF 2SLS RELATIVE TO OLS

Weak instrument tests focus on bias and size distortions in two-tailed 2SLS z-tests. However,
applied researchers use 2SLS because they expect it to deliver more reliable estimates than OLS.
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Figure 8

Probability that the 2SLS estimation error exceeds the worst-case OLS bias. The figure shows the % of runs
with |Bys1.s| > 1. Abbreviations: 2SLS, two-stage least squares; OLS, ordinary least squares.

So we ask, How strong must instruments be to give high confidence that 2SLS will give more
reliable estimates than OLS? If instruments fail to meet this minimal standard, one would be well
advised to find better instruments or consider alternative approaches.

We start to explore this question by asking how often 2SLS estimation errors exceed the worst-
case OLS bias that arises if x is perfectly correlated with the error in the outcome equation. To
do this, we simulate data sets from the model in Equation 12, setting true 8 = 0, and count the
frequency of estimation runs that generate extreme outliers where | Brsis| > 1.1 As we see in
Figure 8, the risk of such extraordinarily large outliers is a remarkable 22-25% in the case of
F =2.30 (F59, = 10), which corresponds to Staiger & Stock’s rule of thumb for acceptable instru-
ment strength. A much stronger instrument level of F = 29.44 (Fsy, = 50) is needed to render
such large outliers virtually impossible.

Figure 9 plots the density of 2SLS estimates in the case of p = 0.6 for three levels of instrument
strength. In the F' = 2.3 (F59, = 10) case, which corresponds to Staiger & Stock’s rule of thumb,
the distribution is highly nonnormal, with fat tails, high frequency of extreme outliers, and left
skewness all very apparent. Only by increasing instrument strength to the much higher level of
F = 29.44 (Fs59, = 50) does normality appear to be a decent approximation to the sampling
distribution of the 2SLS estimator.

Figure 9 also plots the mean OLS estimate, 0.60, and the 95% OLS confidence interval. Care-
ful inspection of the figure reveals that, due to their high dispersion, the 2SLS estimates are
frequently farther from the true value (8 = 0) than the OLS estimates. This is especially true
in the Fso, = 10 and Fso, = 23.1 cases, but it is much less common in the Fso, = 50 case.

Next, in Figure 10, we report the fraction of simulated data sets where 2SLS performs worse
than OLS, meaning that the 2SLS estimate is farther from the true 8 than OLS. Of course, at
low levels of endogeneity (p ~ 0) OLS almost always wins, as there is little bias and OLS is more
efficient. What is surprising is the high frequency with which OLS outperforms 2SLS at much
higher values of p. Take the case of C = 2.30 (Fso, = 10), which corresponds to Staiger & Stock’s
rule of thumb. The value of p has to approach 0.50 before the probability that 2SLS outperforms
OLS passes 50%. In this context, it is worth recalling that p = 1 is the highest possible level of
endogeneity, so p = 0.5 corresponds to a fairly high level of endogeneity.

16We set N = 1,000, but recall that N is not very important, as finite sample properties of 2SLS do not depend
on N or first-stage R? per se but only on how they combine to form = NR? /(1 — R?).
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Figure 9

Kernel density of 2SLS estimates when p = 0.6 and estimates are censored to 2. The figure is based on
100,000 simulated data sets of size N = 1,000. Densities are estimated using a bandwidth of 0.03. The gray
line shows the mean OLS estimate, while the nearby dotted lines are the 95% CI. Abbreviations: 2SLS,

two-stage least squares; CI, confidence interval; OLS, ordinary least squares.

In many applications, one can put a reasonable prior on p (i.e., the OLS bias) and assess the
performance of 2SLS relative to OLS for different levels of instrument strength in that context.
For example, consider the archetypal application of IV to estimating a regression of log wages on
education. Using Panel Study of Income Dynamics (PSID) data from 2015, we calculate a cor-
relation between education and log earnings of 0.45.17 Thus, if education has no true effect on
earnings, and the only reason it is correlated with earnings is endogeneity—i.e., it is perfectly cor-
related with the latent ability endowment—then the highest possible value of p is 0.45. Therefore,
in such an application a uniform prior on p € [0, 0.45] may be reasonable.!®
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Figure 10
Probability of 2SLS performing worse than OLS. The figure plots the proportion of Monte Carlo replications
where |B2s1.s — Bl > |BoLs — Bl. Abbreviations: 2SLS, two-stage least squares; OLS, ordinary least squares.

7We use data on household heads aged 30-54 and partial out the effects of age and age’. The wage
is constructed as labor income/hours. We screen on hours € [400, 4,160], income € [$3,000, $235,884],
wage >2.70 per hour, and valid data on education and labor income. This gives N = 3,634.

I81f education is measured with error, p may go negative. We discuss a measurement error DGP in
Supplemental Appendix D. Figure 10 is symmetric about p = 0, so we do not show the negative side.
Allowing p < 0 would make 2SLS look worse than in our calculations, as it puts more mass near p = 0.
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Table 5 Probability of 2SLS outperforming OLS

Uniform prior for p:
Population F Fso, Oto1l 0 to 0.45 0.35 to 0.45 05to1
1.82 8.96 45 24 41 65
2.30 10 48 26 45 69
3.84 13 56 32 55 77
5.78 16.38 62 38 64 84
10.00 23.10 70 47 77 91
29.44 50 83 65 95 99
73.75 104.70 89 76 100 100

We report the frequency of | Basis — Bl < |BoLs — B across Monte Carlo replications, averaged across all values of p under
a uniform prior that p falls in the indicated range. Abbreviations: 2SLS, two-stage least squares; OLS, ordinary least squares.

Applied researchers may find a prior on p unfamiliar, so it is worth noting that plausible values
of p can be backed out empirically given any hypothesized value of 8. For g = 2, the implied value
of p is the correlation of the residuals from (#) the regression of y — x? on z and (§) the first-stage
regression of x on z.!” For example, if 8 = 0 this is simply the correlation of the reduced-form
errors, and if B = Bors this is zero. Thus, a prior that 8 € (0, Bors), which may be natural in
many applications where one suspects positive selection into treatment, corresponds to a prior that
o lies between zero and the correlation of the reduced-form residuals. This is how we motivate
the uniform prior on p € [0, 0.45] in the example of wages and education.

Table 5 shows the probability that 2SLS will outperform OLS given different levels of instru-
ment strength and different priors on p. For example, if F = 2.30 (F59, = 10), which corresponds
to Staiger & Stock’s rule of thumb for strong instruments, and given a uniform prior p € [0, 0.45],
the probability that 2SLS outperforms OLS is only 26%.

Alternatively, a researcher who thinks education is very highly correlated with ability might
have a uniform prior of p € [0.35, 0.45]. Even then, the probability that 2SLS beats OLS is only
45%. Clearly, in an application to estimating the effect of education on earnings, one should re-
quire a substantially higher level of instrument strength than the £ > 10 rule of thumb, even if
one believes endogeneity is very severe.

If we increase instrument strength to the F = 29.44 (Fso, = 50) level, a uniform prior on
p € [0, 0.45] implies a 65% chance that 2SLS will outperform OLS. Even that level of perfor-
mance is not too inspiring. If we have a uniform prior on p € [0.35, 0.45], meaning we think
endogeneity is very severe, the probability of 2SLS beating OLS increases to 95%.

Thus, in the archetypal application of IV to estimating the return to education, one clearly
needs an F of at least 50 to have high confidence that 2SLS will outperform OLS. Even then,
one’s confidence does not reach 95% unless one believes ability bias is severe.

6.1. Practical Advice on Acceptable First-Stage F Levels

In general, the results of this section suggest that instruments should be much stronger than stan-
dard thresholds, like the popular F > 10, to give confidence that 2SLS results are likely to be
superior to OLS, in the sense that | Brsis — Bl < |BoLs — B. The level of instrument strength
required to have confidence that 2SLS will outperform OLS depends heavily on one’s prior
about p. We suggest that researchers should assess the level of instrument strength required to

Y90Of course one should also include any exogenous control variables present in the application. For example,
in our wage example we control for age and age’.
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have reasonable confidence that 2SLS will outperform OLS in any particular application, based
on reasonable priors on the severity of the endogeneity problem (p).

Despite the difficulty of devising a general rule of thumb, a strong case can be made that ap-
plied researchers should adopt a threshold of instrument strength of at least F > 50 in the single
instrument case. This makes 2SLS likely to outperform OLS at moderate levels of endogeneity,
although at high levels of p a lower F would suffice.?’ As we have seen, this threshold renders ex-
treme 2SLS outliers very unlikely. If such a threshold cannot be met, it is advisable to seek stronger
instruments or pursue alternative strategies, such as OLS combined with a serious attempt to con-
trol for omitted variables.”! We reiterate that robust tests (AR or CLR) should be used in lieu of
2SLS #-tests regardless of F.

Our discussion of properties of the 2SLS estimator has focused on the independent and iden-
tically distributed (iid) normal model of Equation 12 to emphasize key issues.”> However, in
assessing acceptable first-stage F statistics in practice, it is important to consider the impact of
heteroskedasticity and clustering and to use a heteroskedasticity- or cluster-robust F statistic, as
we discuss in Section 8.

6.2. Why Does 2SLS Perform So Poorly Relative to OLS?

The focus of Section 6 on the quality of estimates may seem unrelated to the focus of Sections 2
through 5 on test statistics. Conceptually, however, the reason 2SLS can perform so poorly relative
to OLS even when an instrument is quite strong by conventional standards is closely related to
the issue of the magnitude of cov(z, #) relative to cov(z, x) that we discussed in Section 2.

Consider the strong instrument case of F = 10 (F;¢, = 23.1). Given a sample size of N = 1,000,
this corresponds to a population correlation between the instrument and endogenous variable
of corr(z, x) = 0.10. At this level, even small sample realizations of cd7(z, #) can drive the 2SLS
estimate far from the true value. This is clear from an inspection of the right panel of Figure 4.
While the use of IV solves the endogeneity problem that arises because cov(x, #) # 0, it worsens by
an order of magnitude the sampling problem created by the fact that cov(z, #) # 0 in finite samples.

Increasing sample size does not solve this problem for the following reason. Assume that
N = 100,000. Then, F = 10 corresponds to a population correlation between the instrument
and endogenous variable of only corr(z, x) = 0.01. We can expect the larger sample size to reduce
cairr(z,u) by an order of magnitude, but it is no smaller compared to corr(z, x)!

7. PRACTICAL RELEVANCE IN SELECTED INSTRUMENTAL
VARIABLES PAPERS IN THE AMERICAN ECONOMIC REVIEW, 2011-2013

We explore the practical importance of the issues we have discussed by examining results from
IV papers published in the American Economic Review (AER) from January 2011 to August 2023.
We searched for papers with a first-stage F either below 50 or unknown, which relied on the
t-test for inference. We identified 102 papers, of which 53 could not be replicated, usually due to
confidential data. In the remaining 49, we examined whether #-test results are reversed by the use

20With K > 1 instruments, F contains a factor of 1 /K, so it falls mechanically with K. So an F smaller than
50 is needed to maintain the same probability of 2SLS outperforming OLS. We find that the required Fis
slightly larger than 50/K; very roughly, it is about 50/K3/4.

2IThere are also alternatives to 2SLS that we evaluate in Supplemental Appendix G: the Fuller and JIVE
estimators and the unbiased estimator of Andrews & Armstrong (2017). JIVE performs worse than 2SLS, but
the Fuller and unbiased estimators do somewhat better if endogeneity is severe and instruments are weak.
However, these improvements are not great enough to change our basic advice about acceptable first-stage F.
22This is less restrictive than it appears: Andrews et al. (2019) show that for any heteroskedastic DGP, there
exists a homoskedastic DGP giving equivalent behavior of 2SLS estimates and test statistics.
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Table 6 Problems with #-test inference in AER papers, 2011-2023
Relevant First-stage IV versus OLS AR versus z-test
Article table F-statistic estimate p-value
Just-identified IV models
Alesina & Zhuravskaya Table 6, 8.4 OLS =-1.2 t=0.023
(2011) column 4 Vv=-138 AR = 0.092
Autor et al. (2020) Table 3, 29.0 OLS = 14.0 t=0.09
column 5 IV =46.0 AR =0.04
Hornung (2014) Table 5, 5.7 OLS =1.59 t=0.05
column 3 IV =1.67 AR = 0.093
Juhisz (2018) Table 4, 10.3 OLS =2.47 t =0.004
column 6 IV=2.68 AR =0.13
Markevich & Table §, 17.3 OLS =0.92 t=0.013
Zhuravskaya (2018) column 3 IV =0.78 AR = 0.095
Pascali (2017) Table 6, 25.0 OLS = —0.05 t=0.045
column 3 IV=-0.19 AR = 0.083
Rao (2019) Table 3, 72.0 OLS =4.59 t=0.036
column 4 IV =28.40 AR = 0.093
Shapiro & Walker (2018) Table 1, 14.0 OLS =?* t=0.043
column 1 IV =130.03 AR =0.16
Overidentified IV models
Autor & Dorn (2013) Table 5, 49.0 OLS =0.11 t = 0.007
column 7 [k=3] Iv=0.15 CLR =0.119
Fang & Gavazza (2011) Table 2, 19.2 OLS =0.03 t=0.013
column 2 [k = 6] IV=0.51 CLR =0.056
Nakamura & Steinsson Table 2 ok OLS ~0.2-0.8 ¢t~ 0.00-0.05
(2014) [k =50] IV ~13-19 CLR ~0.36-0.57
Voors et al. (2012) Table 4, 6.0 OLS = 0.06 t=0.052
column 7 [k=2] IV =10.07 CLR =0.302

Heteroskedasticity- or cluster-robust versions of 7, AR, and CLR tests are implemented consistent with each paper’s

methodology. Olea & Pflueger’s (2013) first-stage F is reported for overidentified IV models. One asterisk indicates the

paper cannot be replicated and OLS results are not reported; its inclusion is possible as the authors report both first-stage

and reduced-form results. Two asterisks indicate the first-stage F cannot be calculated due to issues with the covariance

matrix after clustering. Abbreviations: AER, American Economic Review; AR, Anderson-Rubin; CLR, conditional likelihood

ratio; IV, instrumental variables; OLS, ordinary least squares.

of AR or of CLR in overidentified cases. We implemented heteroskedasticity- or cluster-robust
versions of these tests, as appropriate for the data in each paper.> We found that at least one key
result is overturned in 12 of the 49 papers (24%).

These 12 articles are described in Table 6 and Supplemental Appendix H. Eight use just-
identified models, while 4 use overidentified models. In 11 of 12 cases, a result that is significant
according to the t-test is rendered insignificant by using AR or CLR.2* A clear pattern emerges
where, in most of these cases, the 2SLS estimate is close to OLS. It is precisely in such cases that
we expect the 2SLS standard error to be too small due to the power asymmetry problem, making
the #-test overly likely to reject the null hypothesis.

ZFor the CLR test, we rely on Kleibergen’s (2005) extension of the CLR to GMM.
4Many papers report more than one key result, so we are not necessarily saying that all results are reversed.
We only considered main results and not robustness checks and so on.
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The paper by Autor et al. (2020) is the sole instance where use of AR gives a stronger signif-
icance result than the #-test. In this case the 2SLS estimate is far from OLS, which is precisely
when we expect the 2SLS standard error to be too large.

Given publication bias, we expect to find many more published papers where use of AR or
CLR renders -test results insignificant than vice versa. IV regressions that give estimates far from
OLS tend to have spuriously large standard errors, making them less likely to be published in the
first place. In other words, there is selection bias, as we cannot see papers that would have been
published in AER if the AR or CLR test had been trusted for inference instead of the #-test and
if these tests had given more significant results. Therefore, this pattern does not indicate that the
AR or CLR tests are generally more conservative than the #-test.

8. A SIMPLE GUIDE FOR APPLIED RESEARCHERS

Here we present a simple guide for applied researchers seeking to implement IV inference while
avoiding the problems with the 2SLS #-test. In the single instrument case we show how to use
the AR test, and in the multiple instrument case we show how to use CLR. Given its widespread
use among applied economists, we present Stata code to implement our suggestions. When we
examined AER papers from 2011 to 2023, we found only 3 out of 52 that met our search criteria,
used public data, and used software other than Stata.”’

First, consider the case in which outcome y is regressed on the single endogenous variable x
and an exogenous control variable ¢, and where z is the excluded instrument. We suggest reporting
results from the following procedures.

1. Run and report OLS. It is important to compare 2SLS and OLS results.
In Stata: reg y x ¢, vce(zype)
2. Run the first-stage regression of x on z and c.
In Stata: reg x z ¢, vce(zype)
3. Obtain a heteroskedasticity/cluster-robust F statistic for significance of the instrument.
In Stata: test z = 0
4. Compute &.
In Stata: predict xhat, xb
5. Run the second-stage regression of y on & and use the z-test from this regression to test
Hy:B = 0. This t-stat is the AR test of Hy:8 = 0 in the one instrument case.
In Stata: reg y xhat c, vce(type)
6. Construct a valid confidence interval by inverting the AR test.
In Stata: weakiv ivregress 2sls y (x = z) c, vce(#ype)

In all these commands the “vce” option determines how the variance matrix of the parameter
estimates is calculated. The results are rendered robust to heteroskedasticity or clustering via the
option one specifies for “sype,” which refers to the data type—for example, vee(cluster personid)
for panel data. Enter help reg in Stata for a list of options.

In step 3 it is important to use a robust F statistic, as recent papers by Andrews et al. (2019) and
Young (2022) emphasize that 2SLS can suffer from low power and size distortions in environments
with heteroskedastic and/or clustered errors, even if conventional F tests appear acceptable. As we
showed in Section 6, if first-stage sample F is below roughly 50, one may be concerned that the
2SLS estimate may be no more reliable than OLS.

25Those three papers used Matlab and R. We did not replicate them as we lack sufficient familiarity with those
software packages.
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In step 5, the #-statistic and p-value from the second stage regression give the AR test of Hy:8 =
0. The F version of the AR test is the square of the ¢-statistic from the second-stage regression.?
Always remember that the standard error from the-second stage regression is not valid for forming
confidence intervals. Instead, the AR test should be inverted as in step 6, using the Stata command
weakiv by Finlay et al. (2013).27

In step 6, if the confidence interval reported by weakiv is unbounded—i.e., it covers the entire
grid—it means you do not have at least 95% confidence that the model is identified. This will
happen if first-stage F is less than 3.84. You should not be doing IV in this case!

Importantly, our results suggest that the above methodology is preferred for all first-stage F
statistics, not simply ones that are currently considered in the literature to be weak. As the strength
of the instrument grows, inferences using the AR test and the #-test converge.

Finally, we note that the popular user command ivreg2 in Stata also contains the AR test
statistic, but we do not recommend it for two reasons. First, it does not (at the time of writing)
report AR confidence intervals. Second, it reports 2SLS #-test results that we argue are better
left unknown, as this may lead to researchers trying to screen on specifications that contain a
significant z-test. This is undesirable for reasons shown in Figure 7.

Next we consider the case of multiple instruments. In this case, we strongly advise against using
2SLS or the two-step GMM estimator (GMM-2S), which extends 2SLS to heteroskedastic data,
as both suffer from severe bias toward OLS. Furthermore, the associated z-tests suffer from severe
size inflation and power asymmetry.

As we show elsewhere (Keane & Neal 2023), given homoskedasticity, the limited information
maximum likelihood (LIML) estimator and associated CLR test largely avoid these problems.
Continuously updated GMM, often called CUE, generalizes LIML to heteroskedastic data, while
Kleibergen (2005) provides a generalization of CLR. We recommend using these procedures in
the overidentified case.’® For concreteness, consider a case with two instruments z1 and z2. Then
follow the procedure below.

1. Run and report OLS. It is important to compare 2SLS and OLS results.
In Stata: reg y x ¢, vce(#ype)
2. Run the CUE estimator.?’ The ,3CUE is only used to obtain the estimate of 8. The CUE
standard error and #-stat should not be used for inference.
In Stata: ivreg2 y (x = z1 22) c, cue type
3. For inference obtain Kleibergen’s (2005) extension of CLR for GMM.
In Stata: Run weakiv after step 2. The Kleibergen test of Hy:8 = 0 will simply
be called CLR.*® A 95% confidence interval is also provided by default.’!

26You may notice the AR test statistics reported in weakiv and ivreg2 are different from the #-statistic in
the manual second-stage regression. ivreg2 reports both the F and x? versions of the AR test, while weakiv
reports the x? version only. These two versions can diverge when clustered standard errors are used with too
few clusters.

271f an AR test of Hy:8 = B is desired, use the r-test from regressing y — xfBo on & and c.

28 As IV strength increases, LIML and CUE converge to 2SLS and two-step GMM, respectively.

29The CUE is obtained via an iterative procedure. If it fails to converge, or is too computationally burdensome,
LIML with a robust variance matrix is a good fallback option. However, it is less efficient than CUE under
heteroskedasticity.

30Tf a test of Ho:B = Bo is desired, one may regress y — xfo on the instrument vector. The F-test from this
regression is the AR test in the multiple instrument case, but it is less efficient than the CLR test obtained by
replacing y with y — xB in step 2 and repeating step 3.

3nverting the CLR test requires a grid search over by, and by. The command weakiv uses a default grid size,
but the user can specify a finer grid if desired. This increases computation time.
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4. Obtain Hansen’s (1982) J-test. If it rejects the overidentifying restrictions, there is evidence
the instruments are invalid so the results should not be trusted.
In Stata: The J-test is provided in the ivreg2 results (see step 2).
5. Obtain and report Olea & Pflueger’s (2013) first-stage F statistic.
In Stata: Run weakivtest after step 2.%

There are some published papers that use 2SLS and the #-test but then report CLR as a robust-
ness check. However, we advise against this procedure. First, it leads to the same type of problems
we explained in Figure 7. Second, CLR is designed for use with LIML or CUE, and, as we ex-
plain elsewhere (Keane & Neal 2023, figure 10), mixing and matching estimators and test statistics
based on different estimators can generate odd results.

We use Olea & Pflueger’s (2013) first-stage F statistic (O-F) because, as Andrews et al. (2019)
note, it is inappropriate to use either a conventional or an heteroskedasticity-robust F to gauge
instrument strength in nonhomoskedastic overidentified settings.*

Lastly, it is worth noting that the CLR test is optimal in the overidentified case with ho-
moskedastic errors. However, the theory literature has not settled on an optimal test for the
heteroskedastic case. Therefore, there are some proposed alternatives to the Kleibergen test that
we discuss in Supplemental Appendix I. In our experience these tests give similar results unless
the data are poorly behaved (e.g., clustered data with few clusters).

9. CONCLUSION

Since the work of Stock & Yogo (2005), the weak IV literature has focused heavily on the issue
of size inflation in two-tailed 2SLS #-tests.>* The Stock-Yogo tests indicate that a first-stage F
in the 10-20 range is sufficient to guarantee that size inflation is modest in exactly identified
models. However, we argue that the emphasis on size inflation of two-tailed #-tests has caused the
literature to gloss over other important problems that persist even when instruments are much
stronger.

In particular, the 2SLS estimator has the unfortunate property thatit tends to generate standard
errors that are artificially too low precisely when it generates estimates that are close to OLS or
are strongly shifted in the direction of the OLS bias. This association between 2SLS estimates and
standard errors, which we call the power asymmetry, persists even if instruments are very strong.
"This has two important consequences: 2SLS estimates that are close to OLS, or shifted strongly
toward OLS, will appear spuriously precise, so the z-test has inflated power to judge such estimates
significant; and conversely, 2SLS #-tests have little power to detect a true B that is far from the
OLS estimate.

Fortunately, one can largely avoid the power asymmetry problem by using the AR test of
Anderson & Rubin (1949). Furthermore, the AR test has correct size even when instruments are
weak. Hence, we argue that applied researchers should abandon the 2SLS #-test altogether and
adopt AR instead, regardless of the level of instrument strength.

We illustrate the practical importance of the power asymmetry problem by examining IV pa-
pers published in AER from 2011-2023. We consider 49 replicable papers where the first stage
F is below 50 or unknown. In one quarter of these papers a key result obtained using the #test is

32The critical values the command reports are for maximal bias, which is not the only concern.

31n the single instrument case, both O-F and Kleibergen & Paap’s (2006) statistic reduce to the conventional
robust F.

34Stock & Yogo (2005) also test bias relative to OLS. However, this criterion can only be assessed given
overidentification of degree 2, which is less common in practice than exact identification.

www.annualreviews.org o A Practical Guide to Weak Instruments

Supplemental Material >

209


https://www.annualreviews.org/content/journals/10.1146/annurev-economics-092123-111021#supplementary_data

210

overturned by using the AR test.>* In particular, we see many cases where an IV estimate close to
OLS is judged significant by the #-test but insignificant by AR. This is the pattern we expect to
see given the power asymmetry problem.

Another important consequence of the power asymmetry is that size distortions in one-tailed
t-tests are far greater than in two-tailed tests. We find that first-stage F levels in the thousands
are required to reduce size distortions in one-tailed #-tests to modest levels. The reason applied
researchers rarely use one-tailed tests is that they think two-tailed tests are symmetric (so a two-
tailed 5% testis equivalent to a one-tailed 2.5% test). It is important to understand this is not even
close to being true for 2SLS, even with very strong instruments.

The weak IV literature’s heavy focus on #-test size inflation has also deflected attention from
the quality of 2SLS estimates. However, what applied researchers really want is for 2SLS to give
estimates closer to the truth than OLS. Given typical weak IV test thresholds, we find substantial
probabilities of 2SLS performing worse than OLS. For example, a first-stage F > 10 is a test of
whether population F is at least 2.3. At this level of instrument strength, and given a uniform
prior on the degree of the endogeneity, we calculate a 52% probability that 2SLS will generate an
estimate of B farther from the truth than OLS.

Thus, we advise applied researchers to adopt a higher standard of instrument strength in IV ap-
plications. A strong case can be made for a first-stage acceptable ' threshold of at least 50, although
lower values are acceptable if endogeneity is severe. At lower levels of instrument strength, 2SLS
estimates are likely to be even farther from the truth than OLS.

We have focused primarily on the single instrument case to make our presentation as simple as
possible for applied researchers, but elsewhere (Keane & Neal 2023, 2024) we discuss the multiple
instrument case in detail. As we show, the use of multiple instruments makes the power asymmetry
that plagues the #-test worse, and it makes the 2SLS bias and #-test size inflation problems much
more severe. Fortunately, however, we find that the LIML estimator of Anderson & Rubin (1949),
used in conjunction with the CLR test of Moreira (2003), avoids these problems. The continuously
updated GMM (CUE) of Hansen et al. (1996) and the CLR test of Kleibergen (2005) extend these
procedures to heteroskedastic data. In our view these are the best choices in the overidentified case.
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