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n this chapter, we further study the problem of endogenous explanatory variables in multiple 

regression models. In Chapter 3, we derived the bias in the OLS estimators when an important 

variable is omitted; in Chapter 5, we showed that OLS is generally inconsistent under omitted 

variables. Chapter 9 demonstrated that omitted variables bias can be eliminated (or at least mitigated) 

when a suitable proxy variable is given for an unobserved explanatory variable. Unfortunately, 

suitable proxy variables are not always available.

In the previous two chapters, we explained how fixed effects estimation or first differencing can 

be used with panel data to estimate the effects of time-varying independent variables in the presence 

of time-constant omitted variables. Although such methods are very useful, we do not always have 

access to panel data. Even if we can obtain panel data, it does us little good if we are interested in the 

effect of a variable that does not change over time: first differencing or fixed effects estimation elimi-

nates time-constant explanatory variables. In addition, the panel data methods that we have studied so 

far do not solve the problem of time-varying omitted variables that are correlated with the explanatory 

variables.

In this chapter, we take a different approach to the endogeneity problem. You will see how the 

method of instrumental variables (IV) can be used to solve the problem of endogeneity of one or more 

explanatory variables. The method of two stage least squares (2SLS or TSLS) is second in popularity 

only to ordinary least squares for estimating linear equations in applied econometrics.

We begin by showing how IV methods can be used to obtain consistent estimators in the presence 

of omitted variables. IV can also be used to solve the errors-in-variables problem, at least under 

Instrumental Variables 
Estimation and Two Stage 
Least Squares
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certain assumptions. Chapter 16 will demonstrate how to estimate simultaneous equations models 

using IV methods.

Our treatment of instrumental variables estimation closely follows our development of ordinary 

least squares in Part 1, where we assumed that we had a random sample from an underlying popula-

tion. This is a desirable starting point because, in addition to simplifying the notation, it emphasizes 

that the important assumptions for IV estimation are stated in terms of the underlying population (just 

as with OLS). As we showed in Part 2, OLS can be applied to time series data, and the same is true of 

instrumental variables methods. Section 15-7 discusses some special issues that arise when IV meth-

ods are applied to time series data. In Section 15-8, we cover applications to pooled cross sections and 

panel data.

15-1  Motivation: Omitted Variables in a Simple Regression Model
When faced with the prospect of omitted variables bias (or unobserved heterogeneity), we have so 
far discussed three options: (1) we can ignore the problem and suffer the consequences of biased and 
inconsistent estimators; (2) we can try to find and use a suitable proxy variable for the unobserved 
variable; or (3) we can assume that the omitted variable does not change over time and use the fixed 
effects or first-differencing methods from Chapters 13 and 14. The first response can be satisfactory 
if the estimates are coupled with the direction of the biases for the key parameters. For example, if we 
can say that the estimator of a positive parameter, say, the effect of job training on subsequent wages, 
is biased toward zero and we have found a statistically significant positive estimate, we have still 
learned something: job training has a positive effect on wages, and it is likely that we have underes-
timated the effect. Unfortunately, the opposite case, where our estimates may be too large in magni-
tude, often occurs, which makes it very difficult for us to draw any useful conclusions.

The proxy variable solution discussed in Section 9-2 can also produce satisfying results, but it is 
not always possible to find a good proxy. This approach attempts to solve the omitted variable prob-
lem by replacing the unobservable with one or more proxy variables.

Another approach leaves the unobserved variable in the error term, but rather than estimating the 
model by OLS, it uses an estimation method that recognizes the presence of the omitted variable. This 
is what the method of instrumental variables does.

For illustration, consider the problem of unobserved ability in a wage equation for working 
adults. A simple model is

	 log 1wage 2 5 b0 1 b1educ 1 b2abil 1 e,	

where e is the error term. In Chapter 9, we showed how, under certain assumptions, a proxy variable 
such as IQ can be substituted for ability, and then a consistent estimator of b1 is available from the 
regression of

	 log 1wage 2  on educ, IQ.	

Suppose, however, that a proxy variable is not available (or does not have the properties needed to 
produce a consistent estimator of b1). Then, we put abil into the error term, and we are left with the 
simple regression model

	 log 1wage 2 5 b0 1 b1educ 1 u,	 [15.1]

where u contains abil. Of course, if equation (15.1) is estimated by OLS, a biased and inconsistent 
estimator of b1 results if educ and abil are correlated.
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It turns out that we can still use equation (15.1) as the basis for estimation, provided we can find 
an instrumental variable for educ. To describe this approach, the simple regression model is written as

	 y 5 b0 1 b1x 1 u,	 [15.2]

where we think that x and u are correlated (have nonzero covariance):

	 Cov 1x,u 2 2 0.	 [15.3]

The method of instrumental variables works whether or not x and u are correlated, but, for reasons we 
will see later, OLS should be used if x is uncorrelated with u.

In order to obtain consistent estimators of b0 and b1 when x and u are correlated, we need some 
additional information. The information comes by way of a new variable that satisfies certain prop-
erties. Suppose that we have an observable variable z that satisfies these two assumptions: (1) z is 
uncorrelated with u, that is,

	 Cov 1z,u 2 5 0;	 [15.4]

(2) z is correlated with x, that is,

	 Cov 1z, x 2 2 0.	 [15.5]

Then, we call z an instrumental variable for x, or sometimes simply an instrument for x.
The requirement that the instrument z satisfies (15.4) is summarized by saying “z is exogenous in 

equation (15.2),” and so we often refer to (15.4) as instrument exogeneity. In the context of omitted vari-
ables, instrument exogeneity means that z should have no partial effect on y (after x and omitted variables 
have been controlled for), and z should be uncorrelated with the omitted variables. Equation (15.5) means 
that z must be related, either positively or negatively, to the endogenous explanatory variable x. This condi-
tion is sometimes referred to as instrument relevance (as in “z is relevant for explaining variation in x”).

There is a very important difference between the two requirements for an instrumental variable. 
Because (15.4) involves the covariance between z and the unobserved error u, we cannot generally 
hope to test this assumption: in most cases, we must maintain Cov 1z,u 2 5 0 by appealing to economic 
behavior or introspection. Sometimes, we might have an observable proxy variable for some factor 
contained in u, in which case we can check to see if z and the proxy variable are roughly uncorrelated. 
Of course, if we have a good proxy for an important element of u, we might just add the proxy as an 
explanatory variable and estimate the expanded equation by ordinary least squares. See Section 9-2.

Some readers may be wondering why we do not attempt to check (15.4) by using the following 
procedure. Given a sample of size n, obtain the OLS residuals,  ûi, from the regression yi on xi. Then, 
devise a test based on the sample correlation between zi and  ûi as a check on whether zi and the unob-
served errors ui are correlated. A moment’s thought reveals the logical problem with this procedure. The 
entire reason for moving beyond OLS is that we think the OLS estimators of b0 and b1 are inconsistent 
due to correlation between x and u. Therefore, in computing the OLS residuals  ûi 5 yi 2  b0

^ 2  ̂b1xi, 
we are not getting useful estimates of the ui. Therefore, we can learn nothing by studying the correlation 
between zi and  ûi. A related suggestion is to use the OLS regression yi on xi, zi and to conclude zi satis-
fies the exogeneity requirement if its coefficient is statistically insignificant. Again, this procedure does 
not work, regardless of the outcome of the test, because x is allowed to be endogenous. The bottom line 
is that, in the current setting, we have no way of testing (15.4) unless we use external information.

By contrast, the condition that z is correlated with x (in the population) can be tested, given a 
random sample from the population. The easiest way to do this is to estimate a simple regression 
between x and z. In the population, we have

	 x 5 p0 1 p1z 1 v.	 [15.6]

Then, because p1 5 Cov 1z, x 2 /Var 1z 2 , assumption (15.5) holds if, and only if, p1 2 0. Thus, we 
should be able to reject the null hypothesis

	 H0: p1 5 0	 [15.7]
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against the two-sided alternative H0: p1 2 0, at a sufficiently small significance level. If this is the 
case, then we can be fairly confident that (15.5) holds.

For the log(wage) equation in (15.1), an instrumental variable z for educ must be (1) uncorrelated 
with ability (and any other unobserved factors affecting wage) and (2) correlated with education. 
Something such as the last digit of an individual’s Social Security Number almost certainly satisfies 
the first requirement: it is uncorrelated with ability because it is determined randomly. However, it is 
precisely because of the randomness of the last digit of the SSN that it is not correlated with educa-
tion, either; therefore it makes a poor instrumental variable for educ because it violates the instrument 
relevance requirement in equation (15.5).

What we have called a proxy variable for the omitted variable makes a poor IV for the opposite 
reason. For example, in the log(wage) example with omitted ability, a proxy variable for abil should 
be as highly correlated as possible with abil. An instrumental variable must be uncorrelated with abil. 
Therefore, while IQ is a good candidate as a proxy variable for abil, it is not a good instrumental vari-
able for educ because it violates the instrument exogeneity requirement in equation (15.4).

Whether other possible instrumental variable candidates satisfy the exogeneity requirement in 
(15.4) is less clear-cut. In wage equations, labor economists have used family background variables 
as IVs for education. For example, mother’s education (motheduc) is positively correlated with child’s 
education, as can be seen by collecting a sample of data on working people and running a simple 
regression of educ on motheduc. Therefore, motheduc satisfies equation (15.5). The problem is that 
mother’s education might also be correlated with child’s ability (through mother’s ability and perhaps 
quality of nurturing at an early age), in which case (15.4) fails.

Another IV choice for educ in (15.1) is number of siblings while growing up (sibs). Typically, 
having more siblings is associated with lower average levels of education. Thus, if number of siblings 
is uncorrelated with ability, it can act as an instrumental variable for educ.

As a second example, consider the problem of estimating the causal effect of skipping classes on 
final exam score. In a simple regression framework, we have

	 score 5 b0 1 b1skipped 1 u,	 [15.8]

where score is the final exam score and skipped is the total number of lectures missed during the 
semester. We certainly might be worried that skipped is correlated with other factors in u: more able, 
highly motivated students might miss fewer classes. Thus, a simple regression of score on skipped 
may not give us a good estimate of the causal effect of missing classes.

What might be a good IV for skipped? We need something that has no direct effect on score and 
is not correlated with student ability and motivation. At the same time, the IV must be correlated 
with skipped. One option is to use distance between living quarters and classrooms. Especially at 
large universities, some living quarters will be further from a student’s classrooms, and this may 
essentially be a random occurrence. Some students live off campus while others commute long dis-
tances. Living further away from classrooms may increase the likelihood of missing lectures due to 
bad weather, oversleeping, and so on. Thus, skipped may be positively correlated with distance; this 
can be checked by regressing skipped on distance and doing a t test, as described earlier.

Is distance uncorrelated with u? In the simple regression model (15.8), some factors in u may be cor-
related with distance. For example, students from low-income families may live off campus; if income 
affects student performance, this could cause distance to be correlated with u. Section 15-2 shows how 
to use IV in the context of multiple regression, so that other factors affecting score can be included 
directly in the model. Then, distance might be a good IV for skipped. An IV approach may not be neces-
sary at all if a good proxy exists for student ability, such as cumulative GPA prior to the semester.

There is a final point worth emphasizing before we turn to the mechanics of IV estimation: namely, 
in using the simple regression in equation (15.6) to test (15.7), it is important to take note of the sign 
(and even magnitude) of p̂1 and not just its statistical significance. Arguments for why a variable z 
makes a good IV candidate for an endogenous explanatory variable x should include a discussion about 
the nature of the relationship between x and z. For example, due to genetics and background influences 
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it makes sense that child’s education (x) and mother’s education (z) are positively correlated. If in your 
sample of data you find that they are actually negatively correlated—that is, p̂1 , 0—then your use of 
mother’s education as an IV for child’s education is likely to be unconvincing. [And this has nothing 
to do with whether condition (15.4) is likely to hold.] In the example of measuring whether skipping 
classes has an effect on test performance, one should find a positive, statistically significant relationship 
between skipped and distance in order to justify using distance as an IV for skipped: a negative rela-
tionship would be difficult to justify [and would suggest that there are important omitted variables driv-
ing a negative correlation—variables that might themselves have to be included in the model (15.8)].

We now demonstrate that the availability of an instrumental variable can be used to estimate 
consistently the parameters in equation (15.2). In particular, we show that assumptions (15.4) and 
(15.5) serve to identify the parameter b1. Identification of a parameter in this context means that we 
can write b1 in terms of population moments that can be estimated using a sample of data. To write b1 
in terms of population covariances, we use equation (15.2): the covariance between z and y is

	 Cov 1z, y 2 5 b1Cov 1z, x 2 1 Cov 1z,u 2 .	
Now, under assumption (15.4), Cov 1z,u 2 5 0, and under assumption (15.5), Cov 1z, x 2 2 0. Thus, we 
can solve for b1 as

	 b1 5
Cov 1z, y 2
Cov 1z, x 2 .	 [15.9]

[Notice how this simple algebra fails if z and x are uncorrelated, that is, if Cov 1z, x 2 5 0.] Equation 
(15.9) shows that b1 is the population covariance between z and y divided by the population covari-
ance between z and x, which shows that b1 is identified. Given a random sample, we estimate the 
population quantities by the sample analogs. After canceling the sample sizes in the numerator and 
denominator, we get the instrumental variables (IV) estimator of b1:

	 b̂1 5

an
i51

1zi 2 z 2 1yi 2 y 2

an
i51

1zi 2 z 2 1xi 2 x 2
.	 [15.10]

Given a sample of data on x, y, and z, it is simple to obtain the IV estimator in (15.10). The IV estima-
tor of b0 is simply b̂0 5 y 2 b̂1x, which looks just like the OLS intercept estimator except that the 
slope estimator, b̂1, is now the IV estimator.

It is no accident that when z 5 x we obtain the OLS estimator of b1. In other words,  
when x is exogenous, it can be used as its own IV, and the IV estimator is then identical to the OLS 
estimator.

A simple application of the law of large numbers shows that the IV estimator is consistent for 
b1: plim 1 b̂1 2 5 b1, provided assumptions (15.4) and (15.5) are satisfied. If either assumption fails, 
the IV estimators are not consistent (more on this later). One feature of the IV estimator is that, when 
x and u are in fact correlated—so that instrumental variables estimation is actually needed—it is 
essentially never unbiased. This means that, in small samples, the IV estimator can have a substantial 
bias, which is one reason why large samples are preferred.

When discussing the application of instrumental variables it is important to be careful with 
language. Like OLS, IV is an estimation method. It makes little sense to refer to “an instrumental 
variables model”—just as the phrase “OLS model” makes little sense. As we know, a model is an 
equation such as (15.8), which is a special case of the generic model in equation (15.2). When we 
have a model such as (15.2), we can choose to estimate the parameters of that model in many differ-
ent ways. Prior to this chapter we focused primarily on OLS, but, for example, we also know from 
Chapter 8 that one can use weighted least squares as an alternative estimation method (and there are 
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unlimited possibilities for the weights). If we have an instrumental variable candidate z for x, then we 
can instead apply instrumental variables estimation. It is certainly true that the estimation method we 
apply is motivated by the model and assumptions we make about that model. But the estimators are 
well defined and exist apart from any underlying model or assumptions: remember, an estimator is 
simply a rule for combining data. The bottom line is that while we probably know what a researcher 
means when using a phrase such as “I estimated an IV model,” such language betrays a lack of under-
standing about the difference between a model and an estimation method.

15-1a Statistical Inference with the IV Estimator
Given the similar structure of the IV and OLS estimators, it is not surprising that the IV estimator 
has an approximate normal distribution in large sample sizes. To perform inference on b1, we need a 
standard error that can be used to compute t statistics and confidence intervals. The usual approach 
is to impose a homoskedasticity assumption, just as in the case of OLS. Now, the homoskedasticity 
assumption is stated conditional on the instrumental variable, z, not the endogenous explanatory vari-
able, x. Along with the previous assumptions on u, x, and z, we add

	 E 1u2 0z 2 5 s2 5 Var 1u 2 .	 [15.11]

It can be shown that, under (15.4), (15.5), and (15.11), the asymptotic variance of b̂1 is

	
s2

ns2
xr

2
x, z

 ,	 [15.12]

where s2
x is the population variance of x, s2 is the population variance of u, and r2

x, z is the square of 
the population correlation between x and z. This tells us how highly correlated x and z are in the popu-
lation. As with the OLS estimator, the asymptotic variance of the IV estimator decreases to zero at the 
rate of 1/n, where n is the sample size.

Equation (15.12) is interesting for two reasons. First, it provides a way to obtain a standard error 
for the IV estimator. All quantities in (15.12) can be consistently estimated given a random sample. To 
estimate s2

x, we simply compute the sample variance of xi; to estimate r2
x, z, we can run the regression 

of xi on zi to obtain the R‑squared, say, R2
x, z. Finally, to estimate s2, we can use the IV residuals,

	 ûi 5 yi 2 b̂0 2 b̂1xi,   i 5 1, 2, . . . , n,	

where b̂0 and b̂1 are the IV estimates. A consistent estimator of s2 looks just like the estimator of s2 
from a simple OLS regression:

	 ŝ2 5
1

n 2 2
 an
i51

û2
i ,	

where it is standard to use the degrees of freedom correction (even though this has little effect as the 
sample size grows).

The (asymptotic) standard error of b̂1 is the square root of the estimated asymptotic variance, the 
latter of which is given by

	
ŝ2

SSTx 
#
 R2

x, z

,	 [15.13]

where SSTx is the total sum of squares of the xi. [Recall that the sample variance of xi is SSTx/n, and 
so the sample sizes cancel to give us (15.13).] The resulting standard error can be used to construct 
either t statistics for hypotheses involving b1 or confidence intervals for b1. b̂0 also has a standard 
error that we do not present here. Any modern econometrics package computes the standard error 
after any IV estimation; there is rarely any reason to perform the calculations by hand.
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A second reason (15.12) is interesting is that it allows us to compare the asymptotic variances of 
the IV and the OLS estimators (when x and u are uncorrelated). Under the Gauss-Markov assumptions, 
the variance of the OLS estimator is s2/SSTx, while the comparable formula for the IV estimator is 
s2/ 1SSTx 

#
 R2

x, z 2 ; they differ only in that R2
x, z appears in the denominator of the IV variance. Because an 

R-squared is always less than one, the IV variance is always larger than the OLS variance (when OLS 
is valid). If R2

x, z is small, then the IV variance can be much larger than the OLS variance. Remember, 
R2

x, z measures the strength of the linear relationship between x and z in the sample. If x and z are only 
slightly correlated, R2

x, z can be small, and this can translate into a very large sampling variance for the 
IV estimator. The more highly correlated z is with x, the closer R2

x, z is to one, and the smaller is the var-
iance of the IV estimator. In the case that z 5 x, R2

x, z 5 1, and we get the OLS variance, as expected.
The previous discussion highlights an important cost of performing IV estimation when x and u 

are uncorrelated: the asymptotic variance of the IV estimator is always larger, and sometimes much 
larger, than the asymptotic variance of the OLS estimator.

Example 15.1	 Estimating the Return to Education for Married Women

We use the data on married working women in MROZ to estimate the return to education in the 
simple regression model

	 log 1wage 2 5 b0 1 b1educ 1 u.	 [15.14]

For comparison, we first obtain the OLS estimates:

	  log 1wage 2 5 2.185 1 .109 educ	

	     1 .185 2 1 .014 2 	 [15.15]

	  n 5 428, R2 5 .118. 	

The estimate for b1 implies an almost 11% return for another year of education.
Next, we use father’s education (fatheduc) as an instrumental variable for educ. We have to main-

tain that fatheduc is uncorrelated with u. The second requirement is that educ and fatheduc are cor-
related. We can check this very easily using a simple regression of educ on fatheduc (using only the 
working women in the sample):

	  educ 5 10.24 1 .269 fatheduc	

	     1 .28 2 1 .029 2 	 [15.16]

	  n 5 428, R2 5 .173. 	

The t statistic on fatheduc is 9.28, which indicates that educ and fatheduc have a statistically signifi-
cant positive correlation. (In fact, fatheduc explains about 17% of the variation in educ in the sample.) 
Using fatheduc as an IV for educ gives

	  log 1wage 2 5 .441 1 .059 educ	

	   1 .446 2 1 .035 2 	 [15.17]

	  n 5 428, R2 5 .093. 	

The IV estimate of the return to education is 5.9%, which is barely more than one-half of the OLS esti-
mate. This suggests that the OLS estimate is too high and is consistent with omitted ability bias. But 
we should remember that these are estimates from just one sample: we can never know whether .109 
is above the true return to education, or whether .059 is closer to the true return to education. Further, 
the standard error of the IV estimate is two and one-half times as large as the OLS standard error (this 
is expected, for the reasons we gave earlier). The 95% confidence interval for b1 using OLS is much 
tighter than that using the IV; in fact, the IV confidence interval actually contains the OLS estimate. 
Therefore, although the differences between (15.15) and (15.17) are practically large, we cannot say 
whether the difference is statistically significant. We will show how to test this in Section 15-5.
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In the previous example, the estimated return to education using IV was less than that using 
OLS, which corresponds to our expectations. But this need not have been the case, as the following 
example demonstrates.

Example 15.2	 Estimating the Return to Education for Men

We now use WAGE2 to estimate the return to education for men. We use the variable sibs (number of siblings) 
as an instrument for educ. These are negatively correlated, as we can verify from a simple regression:

	  educ 5 14.14 2 .228 sibs	

	     1 .11 2 1 .030 2 	

	  n 5 935, R2 5 .057. 	

This equation implies that every sibling is associated with, on average, about .23 less of a year of edu-
cation. If we assume that sibs is uncorrelated with the error term in (15.14), then the IV estimator is 
consistent. Estimating equation (15.14) using sibs as an IV for educ gives

	   log 1wage 2 5 5.13 1 .122 educ	

	    1 .36 2 1 .026 2 	

	  n 5 935. 	

(The R-squared is computed to be negative, so we do not report it. A discussion of R-squared in the 
context of IV estimation follows.) For comparison, the OLS estimate of b1 is .059 with a standard error 
of .006. Unlike in the previous example, the IV estimate is now much higher than the OLS estimate. 
Although we do not know whether the difference is statistically significant, this does not mesh with the 
omitted ability bias from OLS. It could be that sibs is also correlated with ability: more siblings means, on 
average, less parental attention, which could result in lower ability. Another interpretation is that the OLS 
estimator is biased toward zero because of measurement error in educ. This is not entirely convincing 
because, as we discussed in Section 9-3, educ is unlikely to satisfy the classical errors-in-variables model.

In the previous examples, the endogenous explanatory variable (educ) and the instrumental variables 
( fatheduc, sibs) have quantitative meaning. But nothing prevents the explanatory variable or IV from 
being binary variables. Angrist and Krueger (1991), in their simplest analysis, came up with a clever 
binary instrumental variable for educ, using census data on men in the United States. Let frstqrt be equal 
to one if the man was born in the first quarter of the year, and zero otherwise. It seems that the error term 
in (15.14)—and, in particular, ability—should be unrelated to quarter of birth. But frstqrt also needs to 
be correlated with educ. It turns out that years of education do differ systematically in the population 
based on quarter of birth. Angrist and Krueger argued persuasively that this is due to compulsory school 
attendance laws in effect in all states. Briefly, students born early in the year typically begin school at an 
older age. Therefore, they reach the compulsory schooling age (16 in most states) with somewhat less 
education than students who begin school at a younger age. For students who finish high school, Angrist 
and Krueger verified that there is no relationship between years of education and quarter of birth.

Because years of education varies only slightly across quarter of birth—which means R2
x, z in 

(15.13) is very small—Angrist and Krueger needed a very large sample size to get a reasonably precise 
IV estimate. Using 247,199 men born between 1920 and 1929, the OLS estimate of the return to 
education was .0801 (standard error .0004), and the IV estimate was .0715 (.0219); these are reported 
in Table III of Angrist and Krueger’s paper. Note how large the t statistic is for the OLS estimate (about 
200), whereas the t statistic for the IV estimate is only 3.26. Thus, the IV estimate is statistically dif-
ferent from zero, but its confidence interval is much wider than that based on the OLS estimate.

An interesting finding by Angrist and Krueger is that the IV estimate does not differ much from 
the OLS estimate. In fact, using men born in the next decade, the IV estimate is somewhat higher 
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than the OLS estimate. One could interpret this as showing that there is no omitted ability bias when 
wage equations are estimated by OLS. However, the Angrist and Krueger paper has been criticized on 
econometric grounds. As discussed by Bound, Jaeger, and Baker (1995), it is not obvious that season 
of birth is unrelated to unobserved factors that affect wage. As we will explain in the next subsection, 
even a small amount of correlation between z and u can cause serious problems for the IV estimator.

For policy analysis, the endogenous explanatory variable is often a binary variable. For example, 
Angrist (1990) studied the effect that being a veteran of the Vietnam War had on lifetime earnings.  
A simple model is

	 log 1earns 2 5 b0 1 b1veteran 1 u,	 [15.18]

where veteran is a binary variable. The problem with estimating this equation by OLS is that there 
may be a self-selection problem, as we mentioned in Chapter 7: perhaps people who get the most out 
of the military choose to join, or the decision to join is correlated with other characteristics that affect 
earnings. These will cause veteran and u to be correlated.

Angrist pointed out that the Vietnam draft lottery 
provided a natural experiment (see also Chapter 13)  
that created an instrumental variable for veteran. 
Young men were given lottery numbers that deter-
mined whether they would be called to serve in 
Vietnam. Because the numbers given were (eventu-
ally) randomly assigned, it seems plausible that draft 
lottery number is uncorrelated with the error term u. 

But those with a low enough number had to serve in Vietnam, so that the probability of being a vet-
eran is correlated with lottery number. If both of these assertions are true, draft lottery number is a 
good IV candidate for veteran.

It is also possible to have a binary endogenous explanatory variable and a binary instrumental 
variable. See Problem 1 for an example.

15-1b Properties of IV with a Poor Instrumental Variable
We have already seen that, though IV is consistent when z and u are uncorrelated and z and x have any 
positive or negative correlation, IV estimates can have large standard errors, especially if z and x are 
only weakly correlated. Weak correlation between z and x can have even more serious consequences: 
the IV estimator can have a large asymptotic bias even if z and u are only moderately correlated.

We can see this by studying the probability limit of the IV estimator when z and u are possibly 
correlated. Letting b̂1, IV denote the IV estimator, we can write

	 plim b̂1, IV 5 b1 1
Corr 1z,u 2
Corr 1z, x 2 ?

su

sx
,	 [15.19]

where su and sx are the standard deviations of u and x in the population, respectively. The interest-
ing part of this equation involves the correlation terms. It shows that, even if Corr 1z,u 2  is small, the 
inconsistency in the IV estimator can be very large if Corr 1z, x 2  is also small. Thus, even if we focus 
only on consistency, it is not necessarily better to use IV than OLS if the correlation between z and 
u is smaller than that between x and u. Using the fact that Corr 1x,u 2 5 Cov 1x,u 2 / 1sx 

su 2  along with 
equation (5.3), we can write the plim of the OLS estimator—call it b̂1, OLS—as

	 plim b̂1, OLS 5 b1 1 Corr 1x,u 2 ?
su

sx
.	 [15.20]

Comparing these formulas shows that it is possible for the directions of the asymptotic biases to be 
different for IV and OLS. For example, suppose Corr 1x,u 2 . 0, Corr 1z, x 2 . 0, and Corr 1z, u 2 , 0.  

I f some men who were assigned low 
draft lottery numbers obtained additional 
schooling to reduce the probability of being 
drafted, is lottery number a good instrument 
for veteran in (15.18)?

Going Further 15.1
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Then the IV estimator has a downward bias, whereas the OLS estimator has an upward bias 
(asymptotically). In practice, this situation is probably rare. More problematic is when the direction 
of the bias is the same and the correlation between z and x is small. For concreteness, suppose x and 
z are both positively correlated with u and Corr 1z, x 2 . 0. Then the asymptotic bias in the IV estima-
tor is less than that for OLS only if Corr 1z,u 2 /Corr 1z, x 2 ,  Corr 1x,u 2 . If Corr 1z, x 2  is small, then a 
seemingly small correlation between z and u can be magnified and make IV worse than OLS, even if 
we restrict attention to bias. For example, if Corr 1z, x 2 5 .2, Corr 1z,u 2  must be less than one-fifth of 
Corr 1z,u 2  before IV has less asymptotic bias than OLS. In many applications, the correlation between 
the instrument and x is less than .2. Unfortunately, because we rarely have an idea about the relative 
magnitudes of Corr 1z,u 2  and Corr 1x,u 2 , we can never know for sure which estimator has the largest 
asymptotic bias [unless, of course, we assume Corr 1z,u 2 5 0].

In the Angrist and Krueger (1991) example mentioned earlier, where x is years of schooling and 
z is a binary variable indicating quarter of birth, the correlation between z and x is very small. Bound, 
Jaeger, and Baker (1995) discussed reasons why quarter of birth and u might be somewhat correlated. 
From equation (15.19), we see that this can lead to a substantial bias in the IV estimator.

When z and x are not correlated at all, things are especially bad, whether or not z is uncorre-
lated with u. The following example illustrates why we should always check to see if the endogenous 
explanatory variable is correlated with the IV candidate.

Example 15.3	 Estimating the Effect of Smoking on Birth Weight

In Chapter 6, we estimated the effect of cigarette smoking on child birth weight. Without other 
explanatory variables, the model is

	 log 1bwght 2 5 b0 1 b1packs 1 u,	 [15.21]

where packs is the number of packs smoked by the mother per day. We might worry that packs is cor-
related with other health factors or the availability of good prenatal care, so that packs and u might be 
correlated. A possible instrumental variable for packs is the average price of cigarettes in the state of 
residence, cigprice. We will assume that cigprice and u are uncorrelated (even though state support 
for health care could be correlated with cigarette taxes).

If cigarettes are a typical consumption good, basic economic theory suggests that packs and cig-
price are negatively correlated, so that cigprice can be used as an IV for packs. To check this, we 
regress packs on cigprice, using the data in BWGHT:

	  packs 5 .067 1 .0003 cigprice 	

	   1 .103 2 1 .0008 2 	

	  n 5 1,388, R2 5 .0000, R2 5 2.0006.	

This indicates no relationship between smoking during pregnancy and cigarette prices, which is 
perhaps not too surprising given the addictive nature of cigarette smoking.

Because packs and cigprice are not correlated, we should not use cigprice as an IV for packs in 
(15.21). But what happens if we do? The IV results would be

	   log 1bwght 2 5 4.45 1 2.99 packs	

	     1 .91 2 18.70 2 	

	  n 5 1,388 	

(the reported R-squared is negative). The coefficient on packs is huge and of an unexpected sign. The 
standard error is also very large, so packs is not significant. But the estimates are meaningless because 
cigprice fails the one requirement of an IV that we can always test: assumption (15.5).
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The previous example shows that IV estimation can produce strange results when the instrument 
relevance condition, Corr 1z, x 2 2 0, fails. Of practically greater interest is the so-called problem 
of weak instruments, which is loosely defined as the problem of “low” (but not zero) correlation 
between z and x. In a particular application, it is difficult to define how low is too low, but recent 
theoretical research, supplemented by simulation studies, has shed considerable light on the issue. 
Staiger and Stock (1997) formalized the problem of weak instruments by modeling the correlation 
between z and x as a function of the sample size; in particular, the correlation is assumed to shrink to 
zero at the rate 1/!n . Not surprisingly, the asymptotic distribution of the instrumental variables esti-
mator is different compared with the usual asymptotics, where the correlation is assumed to be fixed 
and nonzero. One of the implications of the Stock–Staiger work is that the usual statistical inference, 
based on t statistics and the standard normal distribution, can be seriously misleading. We discuss this 
further in Section 15-3.

15-1c Computing R-Squared after IV Estimation
Most regression packages compute an R-squared after IV estimation, using the standard formula: 
R2 5 1 2 SSR/SST, where SSR is the sum of squared IV residuals and SST is the total sum of 
squares of y. Unlike in the case of OLS, the R-squared from IV estimation can be negative because 
SSR for IV can actually be larger than SST. Although it does not really hurt to report the R-squared 
for IV estimation, it is not very useful, either. When x and u are correlated, we cannot decompose the 
variance of y into b2

1Var 1x 2 1 Var 1u 2 , and so the R-squared has no natural interpretation. In addition, 
as we will discuss in Section 15-3, these R-squareds cannot be used in the usual way to compute  
F tests of joint restrictions.

If our goal was to produce the largest R-squared, we would always use OLS. IV methods are 
intended to provide better estimates of the ceteris paribus effect of x on y when x and u are correlated; 
goodness-of-fit is not a factor. A high R-squared resulting from OLS is of little comfort if we cannot 
consistently estimate b1.

15-2  IV Estimation of the Multiple Regression Model
The IV estimator for the simple regression model is easily extended to the multiple regression case. 
We begin with the case where only one of the explanatory variables is correlated with the error. In 
fact, consider a standard linear model with two explanatory variables:

	 y1 5 b0 1 b1y2 1 b2z1 1 u1.	 [15.22]

We call this a structural equation to emphasize that we are interested in the bj, which simply means 
that the equation is supposed to measure a causal relationship. We use a new notation here to dis-
tinguish endogenous from exogenous variables. The dependent variable y1 is clearly endogenous, 
as it is correlated with u1. The variables y2 and z1 are the explanatory variables, and u1 is the error. 
As usual, we assume that the expected value of u1 is zero: E 1u1 2 5 0. We use z1 to indicate that this 
variable is exogenous in (15.22) (z1 is uncorrelated with u1). We use y2 to indicate that this variable 
is suspected of being correlated with u1. We do not specify why y2 and u1 are correlated, but for now 
it is best to think of u1 as containing an omitted variable correlated with y2. The notation in equation 
(15.22) originates in simultaneous equations models (which we cover in Chapter 16), but we use it 
more generally to easily distinguish exogenous from endogenous explanatory variables in a multiple 
regression model.

An example of (15.22) is

	 log 1wage 2 5 b0 1 b1educ 1 b2exper 1 u1,	 [15.23]
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where y1 5 log 1wage 2 , y2 5 educ, and z1 5 exper. In other words, we assume that exper is 
exogenous in (15.23), but we allow that educ—for the usual reasons—is correlated with u1.

We know that if (15.22) is estimated by OLS, all of the estimators will be biased and inconsist-
ent. Thus, we follow the strategy suggested in the previous section and seek an instrumental variable 
for y2. Because z1 is assumed to be uncorrelated with u1, can we use z1 as an instrument for y2, assum-
ing y2 and z1 are correlated? The answer is no. Because z1 itself appears as an explanatory variable in 
(15.22), it cannot serve as an instrumental variable for y2. We need another exogenous variable—call 
it z2—that does not appear in (15.22). Therefore, key assumptions are that z1 and z2 are uncorrelated 
with u1; we also assume that u1 has zero expected value, which is without loss of generality when the 
equation contains an intercept:

	 E 1u1 2 5 0, Cov 1z1,u1 2 5 0, and Cov 1z2,u1 2 5 0.	 [15.24]

Given the zero mean assumption, the latter two assumptions are equivalent to E 1z1u1 2 5 E 1z2u1 2 5 0,  
and so the method of moments approach suggests obtaining estimators b̂0, b̂1, and b̂2 by solving the 
sample counterparts of (15.24):

	  an
i51

1yi1 2 b̂0 2 b̂1yi2 2 b̂2zi1 2 5 0 	

	  an
i51

zi1 1yi1 2 b̂0 2 b̂1yi2 2 b̂2zi1 2 5 0 	 [15.25]

	  an
i51

zi2 1yi1 2 b̂0 2 b̂1yi2 2 b̂2zi1 2 5 0.	

This is a set of three linear equations in the three unknowns b̂0, b̂1, and b̂2, and it is easily solved 
given the data on y1, y2, z1, and z2. The estimators are called instrumental variables estimators. If we 
think y2 is exogenous and we choose z2 5 y2, equations (15.25) are exactly the first order conditions 
for the OLS estimators; see equations (3.13).

We still need the instrumental variable z2 to be correlated with y2, but the sense in which these 
two variables must be correlated is complicated by the presence of z1 in equation (15.22). We now 
need to state the assumption in terms of partial correlation. The easiest way to state the condition is to 

write the endogenous explanatory variable as a linear 
function of the exogenous variables and an error term:

	 y2 5 p0 1 p1z1 1 p2z2 1 v2,	 [15.26]

where, by construction, E 1v2 2 5 0,  Cov 1z1,v2 2 5 0,  
and Cov 1z2,v2 2 5 0, and the pj are unknown para
meters. The key identification condition [along with 
(15.24)] is that

	 p2 2 0.	 [15.27]

In other words, after partialling out z1, y2 and z2 are 
still correlated. This correlation can be positive or 
negative, but it cannot be zero. Testing (15.27) is 
easy: we estimate (15.26) by OLS and use a t test 
(possibly making it robust to heteroskedasticity). We 
should always test this assumption. Unfortunately, 
we cannot test that z1 and z2 are uncorrelated with u1;  
hopefully, we can make the case based on economic 
reasoning or introspection.

Suppose we wish to estimate the effect 
of marijuana usage on college grade point 
average. For the population of college 
seniors at a university, let daysused denote 
the number of days in the past month on 
which a student smoked marijuana and 
consider the structural equation

colGPA 5 b0 1 b1daysused 1 b2SAT 1 u.

(i) Let percHS denote the percentage 
of a student’s high school graduating class 
that reported regular use of marijuana. If this 
is an IV candidate for daysused, write the 
reduced form for daysused. Do you think 
(15.27) is likely to be true?

( i i )  Do you think percHS  is truly 
exogenous in the structural equation? What 
problems might there be?

Going Further 15.2
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Equation (15.26) is an example of a reduced form equation, which means that we have writ-
ten an endogenous variable in terms of exogenous variables. This name comes from simultaneous 
equations models—which we study in Chapter 16—but it is a useful concept whenever we have an 
endogenous explanatory variable. The name helps distinguish it from the structural equation (15.22).

Adding more exogenous explanatory variables to the model is straightforward. Write the struc-
tural model as

	 y1 5 b0 1 b1y2 1 b2z1 1 p 1 bkzk21 1 u1,	 [15.28]

where y2 is thought to be correlated with u1. Let zk be a variable not in (15.28) that is also exogenous. 
Therefore, we assume that

	 E 1u1 2 5 0,  Cov 1zj,u1 2 5 0,    j 5 1, . . . , k.	 [15.29]

Under (15.29), z1, p , zk21 are the exogenous variables appearing in (15.28). In effect, these act as 
their own instrumental variables in estimating the bj in (15.28). The special case of k 5 2 is given in 
the equations in (15.25); along with z2, z1 appears in the set of moment conditions used to obtain the 
IV estimates. More generally, z1, p , zk21 are used in the moment conditions along with the instru-
mental variable for y2, zk.

The reduced form for y2 is

	 y2 5 p0 1 p1z1 1 p 1 pk21zk21 1 pkzk 1 v2,	 [15.30]

and we need some partial correlation between zk and y2:

	 pk 2 0.	 [15.31]

Under (15.29) and (15.31), zk is a valid IV for y2. [We do not care about the remaining pj in (15.30); 
some or all of them could be zero.] A minor additional assumption is that there are no perfect linear 
relationships among the exogenous variables; this is analogous to the assumption of no perfect col-
linearity in the context of OLS.

For standard statistical inference, we need to assume homoskedasticity of u1. We give a careful 
statement of these assumptions in a more general setting in Section 15-3.

Example 15.4	 Using College Proximity as an IV for Education

Card (1995) used wage and education data for a sample of men in 1976 to estimate the return to educa-
tion. He used a dummy variable for whether someone grew up near a four-year college (nearc4) as an 
instrumental variable for education. In a log(wage) equation, he included other standard controls: expe-
rience, a black dummy variable, dummy variables for living in an SMSA and living in the South, and 
a full set of regional dummy variables and an SMSA dummy for where the man was living in 1966. 
In order for nearc4 to be a valid instrument, it must be uncorrelated with the error term in the wage 
equation—we assume this—and it must be partially correlated with educ. To check the latter require-
ment, we regress educ on nearc4 and all of the exogenous variables appearing in the equation. (That is, 
we estimate the reduced form for educ.) Using the data in CARD, we obtain, in condensed form,

 educ 5 16.64 1  .320 nearc4 2  .413 exper 1 p

 1 .24 2  1 .088 2    1 .034 2
 n 5 3,010, R2 5 .477.

We are interested in the coefficient and t statistic on nearc4. The coefficient implies that in 1976, 
other things being fixed (experience, race, region, and so on), people who lived near a college in 1966 
had, on average, about one-third of a year more education than those who did not grow up near a 
college. The t statistic on nearc4 is 3.64, which gives a p-value that is zero in the first three decimals. 
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As discussed earlier, we should not make anything of the smaller R-squared in the IV estimation: 
by definition, the OLS R-squared will always be larger because OLS minimizes the sum of squared 
residuals.

Therefore, if nearc4 is uncorrelated with unobserved factors in the error term, we can use nearc4 as 
an IV for educ.

The OLS and IV estimates are given in Table 15.1. Like the OLS standard errors, the reported 
IV standard errors employ a degrees-of-freedom adjustment in estimating the error variance. In some 
statistical packages the degrees-of-freedom adjustment is the default; in others it is not.

Interestingly, the IV estimate of the return to education is almost twice as large as the OLS esti-
mate, but the standard error of the IV estimate is over 18 times larger than the OLS standard error. 
The 95% confidence interval for the IV estimate is between .024 and .239, which is a very wide 
range. The presence of larger confidence intervals is a price we must pay to get a consistent estimator 
of the return to education when we think educ is endogenous.

Table 15.1  Dependent Variable: log(wage)
Explanatory Variables OLS IV

educ .075
(.003)

.132
(.055)

exper .085
(.007)

.108
(.024)

exper2 2.0023
(.0003)

2.0023
(.0003)

black 2.199
(.018)

2.147
  (.054)

smsa .136
(.020)

.112
(.032)

south 2.148
(.026)

2.145
  (.027)

Observations
R-squared

3,010
.300

3,010
.238

Other controls: smsa66, reg662, …, reg669

It is worth noting, especially for studying the effects of policy interventions, that a reduced form 
equation exists for y1, too. In the context of equation (15.28) with zk an IV for y2, the reduced form for 
y1 always has the form

	 y1 5 g0 1 g1z1 1 p 1 gkzk 1 e1,	 [15.32]

where gj 5 bj 1 b1pj for j , k, gk 5 b1pk, and e1 5 u1 1 b1v2—as can be verified by plugging 
(15.30) into (15.28) and rearranging. Because the zj are exogenous in (15.32), the gj can be consist-
ently estimated by OLS. In other words, we regress y1 on all of the exogenous variables, including zk, 
the IV for y2. Only if we want to estimate b1 in (15.28) do we need to apply IV.

When y2 is a zero-one variable denoting participation and zk is a zero-one variable representing 
eligibility for program participation—which is, hopefully, either randomized across individuals or, at 
most, a function of the other exogenous variables z1, . . . , zk21 (such as income)—the coefficient gk 
has an interesting interpretation. Rather than an estimate of the effect of the program itself, it is an 
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estimate of the effect of offering the program. Unlike b1 in (15.28)—which measures the effect of 
the program itself—gk accounts for the possibility that some units made eligible will choose not to 
participate. In the program evaluation literature, gk is an example of an intention-to-treat parameter: 
it measures the effect of being made eligible and not the effect of actual participation. The intention-
to-treat coefficient, gk 5 b1pk, depends on the effect of participating, b1, and the change (typically, 
increase) in the probability of participating due to being eligible, pk. [When y2 is binary, equation 
(15.30) is a linear probability model, and therefore pk measures the ceteris paribus change in prob-
ability that y2 5 1 as zk switches from zero to one.]

15-3  Two Stage Least Squares
In the previous section, we assumed that we had a single endogenous explanatory variable 1y2 2 , along 
with one instrumental variable for y2. It often happens that we have more than one exogenous variable 
that is excluded from the structural model and might be correlated with y2, which means they are valid 
IVs for y2. In this section, we discuss how to use multiple instrumental variables.

15-3a A Single Endogenous Explanatory Variable
Consider again the structural model (15.22), which has one endogenous and one exogenous explana-
tory variable. Suppose now that we have two exogenous variables excluded from (15.22): z2 and z3.  
Our assumptions that z2 and z3 do not appear in (15.22) and are uncorrelated with the error u1 are 
known as exclusion restrictions.

If z2 and z3 are both correlated with y2, we could just use each as an IV, as in the previous sec-
tion. But then we would have two IV estimators, and neither of these would, in general, be efficient. 
Since each of z1, z2, and z3 is uncorrelated with u1, any linear combination is also uncorrelated with u1,  
and therefore any linear combination of the exogenous variables is a valid IV. To find the best IV, we 
choose the linear combination that is most highly correlated with y2. This turns out to be given by the 
reduced form equation for y2. Write

	 y2 5 p0 1 p1z1 1 p2z2 1 p3z3 1 v2,	 [15.33]

where

	 E 1v2 2 5 0,  Cov 1z1,v2 2 5 0,  Cov 1z2,v2 2 5 0,  and Cov 1z3,v2 2 5 0.	

Then, the best IV for y2 (under the assumptions given in the chapter appendix) is the linear combina-
tion of the zj in (15.33), which we call yp

2:

	 yp
2 5 p0 1 p1z1 1 p2z2 1 p3z3.	 [15.34]

For this IV not to be perfectly correlated with z1 we need at least one of p2 or p3 to be different from zero:

	 p2 2 0 or p3 2 0.	 [15.35]

This is the key identification assumption, once we assume the zj are all exogenous. (The value of 
p1 is irrelevant.) The structural equation (15.22) is not identified if p2 5 0 and p3 5 0. We can test 
H0: p2 5 0 and p3 5 0 against (15.35) using an F statistic.

A useful way to think of (15.33) is that it breaks y2 into two pieces. The first is yp
2; this is the part 

of y2 that is uncorrelated with the error term, u1. The second piece is v2, and this part is possibly cor-
related with u1—which is why y2 is possibly endogenous.

Given data on the zj, we can compute yp
2 for each observation, provided we know the population 

parameters pj. This is never true in practice. Nevertheless, as we saw in the previous section, we can 
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always estimate the reduced form by OLS. Thus, using the sample, we regress y2 on z1, z2, and z3 and 
obtain the fitted values:

	 ŷ2 5 p̂0 1 p̂1z1 1 p̂2z2 1 p̂3z3	 [15.36]

(that is, we have ŷi2 for each i). At this point, we should verify that z2 and z3 are jointly significant in 
(15.33) at a reasonably small significance level (no larger than 5%). If z2 and z3 are not jointly signifi-
cant in (15.33), then we are wasting our time with IV estimation.

Once we have ŷ2, we can use it as the IV for y2. The three equations for estimating b0, b1, and b2 
are the first two equations of (15.25), with the third replaced by

	 an
i51

ŷi2 1yi1 2 b̂0 2 b̂1yi2 2 b̂2zi1 2 5 0.	 [15.37]

Solving the three equations in three unknowns gives us the IV estimators.
With multiple instruments, the IV estimator using ŷi2 as the instrument is also called the  

two stage least squares (2SLS) estimator. The reason is simple. Using the algebra of OLS, it can be 
shown that when we use ŷ2 as the IV for y2, the IV estimates b̂0, b̂1, and b̂2 are identical to the OLS 
estimates from the regression of

	 y1 on ŷ2 and z1.	 [15.38]

In other words, we can obtain the 2SLS estimator in two stages. The first stage is to run the  
regression in (15.36), where we obtain the fitted values ŷ2. The second stage is the OLS regression 
(15.38). Because we use ŷ2 in place of y2, the 2SLS estimates can differ substantially from the OLS 
estimates.

Some economists like to interpret the regression in (15.38) as follows. The fitted value, ŷ2, is the 
estimated version of yp

2, and yp
2 is uncorrelated with u1. Therefore, 2SLS first “purges” y2 of its correla-

tion with u1 before doing the OLS regression in (15.38). We can show this by plugging y2 5 yp
2 1 v2 

into (15.22):

	 y1 5 b0 1 b1y
p
2 1 b2z1 1 u1 1 b1v2.	 [15.39]

Now, the composite error u1 1 b1v2 has zero mean and is uncorrelated with yp
2 and z1, which is why 

the OLS regression in (15.38) works.
Most econometrics packages have special commands for 2SLS, so there is no need to perform 

the two stages explicitly. In fact, in most cases you should avoid doing the second stage manually, as 
the standard errors and test statistics obtained in this way are not valid. [The reason is that the error 
term in (15.39) includes v2, but the standard errors involve the variance of u1 only.] Any regression 
software that supports 2SLS asks for the dependent variable, the list of explanatory variables (both 
exogenous and endogenous), and the entire list of instrumental variables (that is, all exogenous vari-
ables). The output is typically quite similar to that for OLS.

In model (15.28) with a single IV for y2, the IV estimator from Section 15-2 is identical to the 
2SLS estimator. Therefore, when we have one IV for each endogenous explanatory variable, we can 
call the estimation method IV or 2SLS.

Adding more exogenous variables changes very little. For example, suppose the wage equation is

	 log 1wage 2 5 b0 1 b1educ 1 b2exper 1 b3exper2 1 u1,	 [15.40]

where u1 is uncorrelated with both exper and exper2. Suppose that we also think mother’s and father’s 
educations are uncorrelated with u1. Then, we can use both of these as IVs for educ. The reduced form 
(or first stage equation) equation for educ is

	 educ 5 p0 1 p1exper 1 p2exper2 1 p3 
motheduc 1 p4   

fatheduc 1 v2,	 [15.41]

and identification requires that p3 2 0 or p4 2 0 (or both, of course).
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Example 15.5	 Return to Education for Working Women

We estimate equation (15.40) using the data in MROZ. First, we test H0: p3 5 0, p4 5 0 in (15.41) 
using an F test. The result is F 5 124.76, and p-value 5 .0000. As expected, educ is (partially) cor-
related with parents’ education.

When we estimate (15.40) by 2SLS, we obtain, in equation form,

 log 1wage 2 5 .048 1  .061 educ 1  .044 exper 2  .0009 exper2

 1 .400 2  1 .031 2    1 .013 2    1 .0004 2
 n 5 428, R2 5 .136.

The estimated return to education is about 6.1%, compared with an OLS estimate of about 10.8%. 
Because of its relatively large standard error, the 2SLS estimate is barely statistically significant at the 
5% level against a two-sided alternative.

The assumptions needed for 2SLS to have the desired large sample properties are given in the 
chapter appendix, but it is useful to briefly summarize them here. If we write the structural equation 
as in (15.28),

	 y1 5 b0 1 b1y2 1 b2z1 1 p 1 bkzk21 1 u1,	 [15.42]

then we assume each zj to be uncorrelated with u1. In addition, we need at least one exogenous vari-
able not in (15.42) that is partially correlated with y2. This ensures consistency. For the usual 2SLS 
standard errors and t statistics to be asymptotically valid, we also need a homoskedasticity assump-
tion: the variance of the structural error, u1, cannot depend on any of the exogenous variables. For 
time series applications, we need more assumptions, as we will see in Section 15-7.

15-3b Multicollinearity and 2SLS
In Chapter 3, we introduced the problem of multicollinearity and showed how correlation among regres-
sors can lead to large standard errors for the OLS estimates. Multicollinearity can be even more serious 
with 2SLS. To see why, the (asymptotic) variance of the 2SLS estimator of b1 can be approximated as

	 s2/ 3SST2 11 2 R̂2
2 2 4,	 [15.43]

where s2 5 Var 1u1 2 , SST2 is the total variation in ŷ2, and R̂2
2 is the R-squared from a regression of ŷ2 

on all other exogenous variables appearing in the structural equation. There are two reasons why the 
variance of the 2SLS estimator is larger than that for OLS. First, ŷ2, by construction, has less variation 
than y2. (Remember: Total sum of squares 5 explained sum of squares 1 residual sum of squares; 
the variation in y2 is the total sum of squares, while the variation in ŷ2 is the explained sum of squares 
from the first stage regression.) Second, the correlation between ŷ2 and the exogenous variables in 
(15.42) is often much higher than the correlation between y2 and these variables. This essentially 
defines the multicollinearity problem in 2SLS.

As an illustration, consider Example 15.4. When educ is regressed on the exogenous variables in 
Table 15.1 (not including nearc4), R-squared 5 .475; this is a moderate degree of multicollinearity, 
but the important thing is that the OLS standard error on b̂educ is quite small. When we obtain the first 
stage fitted values, educ, and regress these on the exogenous variables in Table 15.1, R-squared 5 .995,  
which indicates a very high degree of multicollinearity between educ and the remaining exogenous 
variables in the table. (This high R-squared is not too surprising because educ is a function of all the 
exogenous variables in Table 15.1, plus nearc4.) Equation (15.43) shows that an R̂2

2 close to one can 
result in a very large standard error for the 2SLS estimator. But as with OLS, a large sample size can 
help offset a large R̂2

2.
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15-3c Detecting Weak Instruments
In Section 15-1 we briefly discussed the problem of weak instruments. We focused on equation 
(15.19), which demonstrates how a small correlation between the instrument and error can lead to 
very large inconsistency (and therefore bias) if the instrument, z, also has little correlation with the 
explanatory variable, x. The same problem can arise in the context of the multiple equation model in 
equation (15.42), whether we have one instrument for y2 or more instruments than we need.

We also mentioned the findings of Staiger and Stock (1997), and we now discuss the practical 
implications of this research in a bit more depth. Importantly, Staiger and Stock study the case of where 
all instrumental variables are exogenous. With the exogeneity requirement satisfied by the instruments, 
they focus on the case where the instruments are weakly correlated with y2, and they study the validity 
of standard errors, confidence intervals, and t statistics involving the coefficient b1 on y2. The mecha-
nism they used to model weak correlation led to an important finding: even with very large sample 
sizes the 2SLS estimator can be biased and a distribution that is very different from standard normal.

Building on Staiger and Stock (1997), Stock and Yogo (2005) (SY for short) proposed methods 
for detecting situations where weak instruments will lead to substantial bias and distorted statistical 
inference. Conveniently, Stock and Yogo obtained rules concerning the size of the t statistic (with one 
instrument) or the F statistic (with more than one instrument) from the first-stage regression. The the-
ory is much too involved to pursue here. Instead, we describe some simple rules of thumb proposed 
by Stock and Yogo that are easy to implement.

The key implication of the SY work is that one needs more than just a statistical rejection of the null 
hypothesis in the first stage regression at the usual significance levels. For example, in equation (15.6), it 
is not enough to reject the null hypothesis stated in (15.7) at the 5% significance level. Using bias calcu-
lations for the instrumental variables estimator, SY recommend that one can proceed with the usual IV 
inference if the first-stage t statistic has absolute value larger than "10 < 3.2. Readers will recognize 
this value as being well above the 95th percentile of the standard normal distribution, 1.96, which is what 
we would use for a standard 5% significance level. This same rule of thumb applies in the multiple regres-
sion model with a single endogenous explanatory variable, y2, and a single instrumental variable, zk.  
In particular, the t statistic in testing hypothesis (15.31) should be at least 3.2 in absolute value.

SY cover the case of 2SLS, too. In this case, we must focus on the first-stage F statistic for 
exclusion of the instrumental variables for y2, and the SY rule is F . 10. (Notice this is the same rule 
based on the t statistic when there is only one instrument, as t2 5 F.) For example, consider equation 
(15.34), where we have two instruments for y2, z2 and z3. Then the F statistic for the null hypothesis

	 H0: p2 5 0, p3 5 0	

should have F . 10. Remember, this is not the overall F statistic for all of the exogenous variables in 
(15.34). We test only the coefficients on the proposed IVs for y2, that is, the exogenous variables that 
do not appear in (15.22). In Example 15.5 the relevant F statistic is 124.76, which is well above 10, 
implying that we do not have to worry about weak instruments. (Of course, the exogeneity of the par-
ents’ education variables is in doubt.)

The rule of thumb of requiring the F statistic to be larger than 10 tends to work well and is easy to 
remember. However, like all rules of thumb involving statistical inference, it makes no sense to use 10 
as a knife-edge cutoff. For example, one can probably proceed if F 5 9.94, as it is pretty close to 10. 
The rule of thumb should be used as a guideline. SY have more detailed suggestions for cases where 
there are many instruments for y2, say five or more.

A more complicated issue is what happens if there is heteroskedasticity in either the equation of 
interest, (15.28), or the reduced form (first stage) for the endogenous explanatory variables, (15.30). 
Stock and Yogo (2005) did not allow for heteroskedasticity in either equation (or, in a time series or 
panel context, serial correlation). It makes sense that the requirements for the first-stage t or F statistic 
would be more stringent. Work by Olea and Pflueger (2013) suggests this is the case: the first-stage F 
might need to be more like 20 rather than 10 in order to ensure the instruments are sufficiently strong. 
This is an ongoing area of research.
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15-3d Multiple Endogenous Explanatory Variables
Two stage least squares can also be used in models with more than one endogenous explanatory vari-
able. For example, consider the model

	 y1 5 b0 1 b1y2 1 b2y3 1 b3z1 1 b4z2 1 b5z3 1 u1,	 [15.44]

where E 1u1 2 5 0 and u1 is uncorrelated with z1, z2, and z3. The variables y2 and y3 are endogenous 
explanatory variables: each may be correlated with u1.

To estimate (15.44) by 2SLS, we need at least two exogenous variables that do not appear in 
(15.44) but that are correlated with y2 and y3. Suppose we have two excluded exogenous variables, 
say z4 and z5. Then, from our analysis of a single endogenous explanatory variable, we need either 
z4 or z5 to appear in each reduced form for y2 and y3. (As before, we can use F statistics to test 
this.) Although this is necessary for identification, unfortunately, it is not sufficient. Suppose that z4 
appears in each reduced form, but z5 appears in neither. Then, we do not really have two exogenous 
variables partially correlated with y2 and y3. Two stage least squares will not produce consistent esti-
mators of the bj.

Generally, when we have more than one endogenous explanatory variable in a regression model, 
identification can fail in several complicated ways. But we can easily state a necessary condition for 
identification, which is called the order condition.

Order Condition for Identification of an Equation.  We 
need at least as many excluded exogenous variables 
as there are included endogenous explanatory vari-
ables in the structural equation. The order condition 
is simple to check, as it only involves counting en-
dogenous and exogenous variables. The sufficient 
condition for identification is called the rank condi-
tion. We have seen special cases of the rank condition 
before—for example, in the discussion surrounding 
equation (15.35). A general statement of the rank 
condition requires matrix algebra and is beyond the 
scope of this text. [See Wooldridge (2010, Chapter 5).]  
It is even more difficult to obtain diagnostics for weak 
instruments.

15-3e  Testing Multiple Hypotheses after 2SLS Estimation
We must be careful when testing multiple hypotheses in a model estimated by 2SLS. It is tempting 
to use either the sum of squared residuals or the R-squared form of the F statistic, as we learned with 
OLS in Chapter 4. The fact that the R-squared in 2SLS can be negative suggests that the usual way of 
computing F statistics might not be appropriate; this is the case. In fact, if we use the 2SLS residu-
als to compute the SSRs for both the restricted and unrestricted models, there is no guarantee that 
SSRr $ SSRur; if the reverse is true, the F statistic would be negative.

It is possible to combine the sum of squared residuals from the second stage regression [such 
as (15.38)] with SSRur to obtain a statistic with an approximate F distribution in large samples. 
Because many econometrics packages have simple-to-use test commands that can be used to 
test multiple hypotheses after 2SLS estimation, we omit the details. Davidson and MacKinnon 
(1993) and Wooldridge (2010, Chapter 5) contain discussions of how to compute F-type statistics  
for 2SLS.

The following model explains violent crime 
rates, at the city level, in terms of a binary 
variable for whether gun control laws exist 
and other controls:

 violent 5 b0 1 b1guncontrol 1 b2unem
 1 b3 popul 1 b4percblck
 1 b5age18221 1 p .

Some researchers have estimated similar 
equations using variables such as the num-
ber of National Rifle Association members in 
the city and the number of subscribers to gun 
magazines as instrumental variables for gun-
control [see, for example, Kleck and Patterson 
(1993)]. Are these convincing instruments?

Going Further 15.3
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15-4  IV Solutions to Errors-in-Variables Problems
In the previous sections, we presented the use of instrumental variables as a way to solve the omitted 
variables problem, but they can also be used to deal with the measurement error problem. As an illus-
tration, consider the model

	 y 5 b0 1 b1x
p
1 1 b2x2 1 u,	 [15.45]

where y and x2 are observed but xp
1 is not. Let x1 be an observed measurement of xp

1: x1 5 xp
1 1 e1, 

where e1 is the measurement error. In Chapter 9, we showed that correlation between x1 and e1 causes 
OLS, where x1 is used in place of xp

1, to be biased and inconsistent. We can see this by writing

	 y 5 b0 1 b1x1 1 b2x2 1 1u 2 b1e1 2 .	 [15.46]

If the classical errors-in-variables (CEV) assumptions hold, the bias in the OLS estimator of b1 is 
toward zero. Without further assumptions, we can do nothing about this.

In some cases, we can use an IV procedure to solve the measurement error problem. In (15.45), 
we assume that u is uncorrelated with xp

1, x1, and x2; in the CEV case, we assume that e1 is uncor-
related with xp

1 and x2. These imply that x2 is exogenous in (15.46), but that x1 is correlated with e1. 
What we need is an IV for x1. Such an IV must be correlated with x1, uncorrelated with u—so that it 
can be excluded from (15.45)—and uncorrelated with the measurement error, e1.

One possibility is to obtain a second measurement on xp
1, say, z1. Because it is xp

1 that affects y, it 
is only natural to assume that z1 is uncorrelated with u. If we write z1 5 xp

1 1 a1, where a1 is the meas-
urement error in z1, then we must assume that a1 and e1 are uncorrelated. In other words, x1 and z1 
both mismeasure xp

1, but their measurement errors are uncorrelated. Certainly, x1 and z1 are correlated 
through their dependence on xp

1, so we can use z1 as an IV for x1.
Where might we get two measurements on a variable? Sometimes, when a group of workers is asked 

for their annual salary, their employers can provide a second measure. For married couples, each spouse 
can independently report the level of savings or family income. In the Ashenfelter and Krueger (1994) 
study cited in Section 14-3, each twin was asked about his or her sibling’s years of education; this gives 
a second measure that can be used as an IV for self-reported education in a wage equation. (Ashenfelter 
and Krueger combined differencing and IV to account for the omitted ability problem as well; more on 
this in Section 15-8.) Generally, though, having two measures of an explanatory variable is rare.

An alternative is to use other exogenous variables as IVs for a potentially mismeasured variable. 
For example, our use of motheduc and fatheduc as IVs for educ in Example 15.5 can serve this pur-
pose. If we think that educ 5 educp 1 e1, then the IV estimates in Example 15.5 do not suffer from 
measurement error if motheduc and fatheduc are uncorrelated with the measurement error, e1. This is 
probably more reasonable than assuming motheduc and fatheduc are uncorrelated with ability, which 
is contained in u in (15.45).

IV methods can also be adopted when using things like test scores to control for unobserved 
characteristics. In Section 9-2, we showed that, under certain assumptions, proxy variables can be 
used to solve the omitted variables problem. In Example 9.3, we used IQ as a proxy variable for 
unobserved ability. This simply entails adding IQ to the model and performing an OLS regression. 
But there is an alternative that works when IQ does not fully satisfy the proxy variable assumptions. 
To illustrate, write a wage equation as

	 log 1wage 2 5 b0 1 b1educ 1 b2exper 1 b3exper2 1 abil 1 u,	 [15.47]

where we again have the omitted ability problem. But we have two test scores that are indicators of 
ability. We assume that the scores can be written as

	 test1 5 g1abil 1 e1	

and

	 test2 5 d1abil 1 e2,	
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where g1 . 0, d1 . 0. Since it is ability that affects wage, we can assume that test1 and test2  
are uncorrelated with u. If we write abil in terms of the first test score and plug the result into (15.47), 
we get

	 log 1wage 2 5 b0 1 b1educ 1 b2exper 1 b3exper2 1 a1test1 1 1u 2 a1e1 2 ,	 [15.48]

where a1 5 1/g1. Now, if we assume that e1 is uncorrelated with all the explanatory variables in 
(15.47), including abil, then e1 and test1 must be correlated. [Notice that educ is not endogenous 
in (15.48); however, test1 is.] This means that estimating (15.48) by OLS will produce inconsistent 
estimators of the bj (and a1). Under the assumptions we have made, test1 does not satisfy the proxy 
variable assumptions.

If we assume that e2 is also uncorrelated with all the explanatory variables in (15.47) and that e1 
and e2 are uncorrelated, then e1 is uncorrelated with the second test score, test2. Therefore, test2 can be 
used as an IV for test1.

Example 15.6	 Using Two Test Scores as Indicators of Ability

We use the data in WAGE2 to implement the preceding procedure, where IQ plays the role of the first 
test score and KWW (knowledge of the world of work) is the second test score. The explanatory vari-
ables are the same as in Example 9.3: educ, exper, tenure, married, south, urban, and black. Rather 
than adding IQ and doing OLS, as in column (2) of Table 9.2, we add IQ and use KWW as its instru-
ment. The coefficient on educ is .025 (se 5 .017). This is a low estimate, and it is not statistically dif-
ferent from zero. This is a puzzling finding, and it suggests that one of our assumptions fails; perhaps 
e1 and e2 are correlated.

15-5  Testing for Endogeneity and Testing Overidentifying Restrictions
In this section, we describe two important tests in the context of instrumental variables estimation.

15-5a  Testing for Endogeneity
The 2SLS estimator is less efficient than OLS when the explanatory variables are exogenous; as we 
have seen, the 2SLS estimates can have very large standard errors. Therefore, it is useful to have a 
test for endogeneity of an explanatory variable that shows whether 2SLS is even necessary. Obtaining 
such a test is rather simple.

To illustrate, suppose we have a single suspected endogenous variable,

	 y1 5 b0 1 b1y2 1 b2z1 1 b3z2 1 u1,	 [15.49]

where z1 and z2 are exogenous. We have two additional exogenous variables, z3 and z4, which do not 
appear in (15.49). If y2 is uncorrelated with u1, we should estimate (15.49) by OLS. How can we test 
this? Hausman (1978) suggested directly comparing the OLS and 2SLS estimates and determining 
whether the differences are statistically significant. After all, both OLS and 2SLS are consistent if all 
variables are exogenous. If 2SLS and OLS differ significantly, we conclude that y2 must be endog-
enous (maintaining that the zj are exogenous).

It is a good idea to compute OLS and 2SLS to see if the estimates are practically different. To 
determine whether the differences are statistically significant, it is easier to use a regression test. This 
is based on estimating the reduced form for y2, which in this case is

	 y2 5 p0 1 p1z1 1 p2z2 1 p3z3 1 p4z4 1 v2.	 [15.50]
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Now, since each zj is uncorrelated with u1, y2 is uncorrelated with u1 if, and only if, v2 is uncorrelated 
with u1; this is what we wish to test. Write u1 5 d1v2 1 e1, where e1 is uncorrelated with v2 and has 
zero mean. Then, u1 and v2 are uncorrelated if, and only if, d1 5 0. The easiest way to test this is 
to include v2 as an additional regressor in (15.49) and to do a t test. There is only one problem with 
implementing this: v2 is not observed, because it is the error term in (15.50). Because we can esti-
mate the reduced form for y2 by OLS, we can obtain the reduced form residuals, v̂2. Therefore, we 
estimate

	 y1 5 b0 1 b1y2 1 b2z1 1 b3z2 1 d1v̂2 1 error	 [15.51]

by OLS and test H0: d1 5 0 using a t statistic. If we reject H0 at a small significance level, we con-
clude that y2 is endogenous because v2 and u1 are correlated.

Testing for Endogeneity of a Single Explanatory Variable:
(i) Estimate the reduced form for y2 by regressing it on all exogenous variables (including those 

in the structural equation and the additional IVs). Obtain the residuals, v̂2.
(ii) Add v̂2 to the structural equation (which includes y2) and test for significance of v̂2 using 

an OLS regression. If the coefficient on v̂2 is statistically different from zero, we conclude that y2 is 
indeed endogenous. We might want to use a heteroskedasticity-robust t test.

Example 15.7	 Return to Education for Working Women

We can test for endogeneity of educ in (15.40) by obtaining the residuals v̂2 from estimating the 
reduced form (15.41)—using only working women—and including these in (15.40). When we do 
this, the coefficient on v̂2 is d̂1 5 .058, and t 5 1.67. This is moderate evidence of positive correlation 
between u1 and v2. It is probably a good idea to report both estimates because the 2SLS estimate of 
the return to education (6.1%) is well below the OLS estimate (10.8%).

An interesting feature of the regression from step (ii) of the test for endogeneity is that the coeffi-
cient estimates on all explanatory variables (except, of course, v̂2) are identical to the 2SLS estimates. For 
example, estimating (15.51) by OLS produces the same b̂j as estimating (15.49) by 2SLS. One benefit 
of this equivalence is that it provides an easy check on whether you have done the proper regression in 
testing for endogeneity. But it also gives a different, useful interpretation of 2SLS: adding v̂2 to the origi-
nal equation as an explanatory variable, and applying OLS, clears up the endogeneity of y2. So, when 
we start by estimating (15.49) by OLS, we can quantify the importance of allowing y2 to be endogenous  
by seeing how much b̂1 changes when v̂2 is added to the equation. Irrespective of the outcome of the 
statistical tests, we can see whether the change in b̂1 is expected and is practically significant.

If, in the end, the 2SLS estimates are chosen, one should obtain the standard errors using built-in 
2SLS routines rather than those from regression (15.51). The standard errors obtained from the OLS 
regression (15.51) are valid only under the null hypothesis d1 5 0.

We can also test for endogeneity of multiple explanatory variables. For each suspected endog-
enous variable, we obtain the reduced form residuals, as in part (i). Then, we test for joint significance 
of these residuals in the structural equation, using an F test. Joint significance indicates that at least 
one suspected explanatory variable is endogenous. The number of exclusion restrictions tested is the 
number of suspected endogenous explanatory variables.

15-5b  Testing Overidentification Restrictions
When we introduced the simple instrumental variables estimator in Section 15-1, we emphasized that 
the instrument must satisfy two requirements: it must be uncorrelated with the error (exogeneity) and 
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correlated with the endogenous explanatory variable (relevance). We have now seen that, even in models 
with additional explanatory variables, the second requirement can be tested using a t test (with just one 
instrument) or an F test (when there are multiple instruments). In the context of the simple IV estimator, 
we noted that the exogeneity requirement cannot be tested. However, if we have more instruments than 
we need, we can effectively test whether some of them are uncorrelated with the structural error.

As a specific example, again consider equation (15.49) with two instrumental variables for y2, z3,  
and z4. Remember, z1 and z2 essentially act as their own instruments. Because we have two instru-
ments for y2, we can estimate (15.49) using, say, only z3 as an IV for y2; let b̌1 be the resulting IV 
estimator of b1. Then, we can estimate (15.49) using only z4 as an IV for y2; call this IV estimator b|1. 
If all zj are exogenous, and if z3 and z4 are each partially correlated with y2, then b̌1 and b|1 are both 
consistent for b1. Therefore, if our logic for choosing the instruments is sound, b̌1 and b|1 should differ 
only by sampling error. Hausman (1978) proposed basing a test of whether z3 and z4 are both exog-
enous on the difference, b1

ˇ 2 b|1. Shortly, we will provide a simpler way to obtain a valid test, but, 
before doing so, we should understand how to interpret the outcome of the test.

If we conclude that b̌1 and b|1 are statistically different from one another, then we have no choice 
but to conclude that either z3, z4, or both fail the exogeneity requirement. Unfortunately, we cannot 
know which is the case (unless we simply assert from the beginning that, say, z3 is exogenous). For 
example, if y2 denotes years of schooling in a log wage equation, z3 is mother’s education, and z4 is 
father’s education, a statistically significant difference in the two IV estimators implies that one or 
both of the parents’ education variables are correlated with u1 in (15.54).

Certainly, rejecting that one’s instruments are exogenous is serious and requires a new approach. 
But the more serious, and subtle, problem in comparing IV estimates is that they may be similar even 
though both instruments fail the exogeneity requirement. In the previous example, it seems likely 
that if mother’s education is positively correlated with u1, then so is father’s education. Therefore, the 
two IV estimates may be similar even though each is inconsistent. In effect, because the IVs in this 
example are chosen using similar reasoning, their separate use in IV procedures may very well lead 
to similar estimates that are nevertheless both inconsistent. The point is that we should not feel espe-
cially comfortable if our IV procedures pass the Hausman test.

Another problem with comparing two IV estimates is that often they may seem practically dif-
ferent yet, statistically, we cannot reject the null hypothesis that they are consistent for the same 
population parameter. For example, in estimating (15.40) by IV using motheduc as the only instru-
ment, the coefficient on educ is .049 (.037). If we use only fatheduc as the IV for educ, the coefficient 
on educ is .070 (.034). [Perhaps not surprisingly, the estimate using both parents’ education as IVs is 
in between these two, .061 (.031).] For policy purposes, the difference between 5% and 7% for the 
estimated return to a year of schooling is substantial. Yet, as shown in Example 15.8, the difference is 
not statistically significant.

The procedure of comparing different IV estimates of the same parameter is an example of test-
ing overidentifying restrictions. The general idea is that we have more instruments than we need to 
estimate the parameters consistently. In the previous example, we had one more instrument than we 
need, and this results in one overidentifying restriction that can be tested. In the general case, sup-
pose that we have q more instruments than we need. For example, with one endogenous explanatory 
variable, y2, and three proposed instruments for y2, we have q 5 3 2 1 5 2 overidentifying restric-
tions. When q is two or more, comparing several IV estimates is cumbersome. Instead, we can easily 
compute a test statistic based on the 2SLS residuals. The idea is that, if all instruments are exog-
enous, the 2SLS residuals should be uncorrelated with the instruments, up to sampling error. But if 
there are k 1 1 parameters and k 1 1 1 q instruments, the 2SLS residuals have a zero mean and are 
identically uncorrelated with k linear combinations of the instruments. (This algebraic fact contains, 
as a special case, the fact that the OLS residuals have a zero mean and are uncorrelated with the k 
explanatory variables.) Therefore, the test checks whether the 2SLS residuals are correlated with q 
linear functions of the instruments, and we need not decide on the functions; the test does that for us 
automatically.
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The following regression-based test is valid when the homoskedasticity assumption, listed as 
Assumption 2SLS.5 in the chapter appendix, holds.

Testing Overidentifying Restrictions:
(i) Estimate the structural equation by 2SLS and obtain the 2SLS residuals, û1.
(ii) Regress û1 on all exogenous variables. Obtain the R-squared, say, R2

1.
(iii) Under the null hypothesis that all IVs are uncorrelated with u1, nR2

1
a, x2

q, where q is the 
number of instrumental variables from outside the model minus the total number of endogenous 
explanatory variables. If nR2

1 exceeds (say) the 5% critical value in the x2
q distribution, we reject H0 

and conclude that at least some of the IVs are not exogenous.

Example 15.8	 Return to Education for Working Women

When we use motheduc and fatheduc as IVs for educ in (15.40), we have a single overidentifying 
restriction. Regressing the 2SLS residuals û1 on exper, exper2, motheduc, and fatheduc produces 
R2

1 5 .0009. Therefore, nR2
1 5 428 1 .0009 2 5 .3852, which is a very small value in a x2

1 distribution 
1p-value 5 .535 2 . Therefore, the parents’ education variables pass the overidentification test. When 
we add husband’s education to the IV list, we get two overidentifying restrictions, and nR2

1 5 1.11 
1p-value 5 .574 2 . Subject to the preceding cautions, it seems reasonable to add huseduc to the IV 
list, as this reduces the standard error of the 2SLS estimate: the 2SLS estimate on educ using all three 
instruments is .080 1se 5 .022 2 , so this makes educ much more significant than when huseduc is not 
used as an IV 1 b̂educ 5 .061, se 5 .031 2 .

When q 5 1, a natural question is: How does the test obtained from the regression-based proce-
dure compare with a test based on directly comparing the estimates? In fact, the two procedures are 
asymptotically the same. As a practical matter, it makes sense to compute the two IV estimates to see 
how they differ. More generally, when q $ 2, one can compare the 2SLS estimates using all IVs to 
the IV estimates using single instruments. By doing so, one can see if the various IV estimates are 
practically different, whether or not the overidentification test rejects or fails to reject.

In the previous example, we alluded to a general fact about 2SLS: under the standard 2SLS assump-
tions, adding instruments to the list improves the asymptotic efficiency of the 2SLS. But this requires that 
any new instruments are in fact exogenous—otherwise, 2SLS will not even be consistent—and it is only an 
asymptotic result. With the typical sample sizes available, adding too many instruments—that is, increas-
ing the number of overidentifying restrictions—can cause severe biases in 2SLS. A detailed discussion 
would take us too far afield. A nice illustration is given by Bound, Jaeger, and Baker (1995), who argue 
that the 2SLS estimates of the return to education obtained by Angrist and Krueger (1991), using many 
instrumental variables, are likely to be seriously biased (even with hundreds of thousands of observations!).

The overidentification test can be used whenever we have more instruments than we need. If we have 
just enough instruments, the model is said to be just identified, and the R-squared in part (ii) will be identi-
cally zero. As we mentioned earlier, we cannot test exogeneity of the instruments in the just identified case.

The test can be made robust to heteroskedasticity of arbitrary form; for details, see Wooldridge 
(2010, Chapter 5).

15-6  2SLS with Heteroskedasticity
Heteroskedasticity in the context of 2SLS raises essentially the same issues as with OLS. Most impor-
tantly, it is possible to obtain standard errors and test statistics that are (asymptotically) robust to 
heteroskedasticity of arbitrary and unknown form. In fact, expression (8.4) continues to be valid if the 
r̂ij are obtained as the residuals from regressing x̂ij on the other x̂ih, where the “^” denotes fitted values 
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from the first stage regressions (for endogenous explanatory variables). Wooldridge (2010, Chapter 5) 
contains more details. Some software packages do this routinely.

We can also test for heteroskedasticity, using an analog of the Breusch-Pagan test that we covered 
in Chapter 8. Let û denote the 2SLS residuals and let z1, z2, . . . , zm denote all the exogenous vari-
ables (including those used as IVs for the endogenous explanatory variables). Then, under reasonable 
assumptions [spelled out, for example, in Wooldridge (2010, Chapter 5)], an asymptotically valid 
statistic is the usual F statistic for joint significance in a regression of û2 on z1, z2, . . . , zm. The null 
hypothesis of homoskedasticity is rejected if the zj are jointly significant.

If we apply this test to Example 15.8, using motheduc, fatheduc, and huseduc as instruments for 
educ, we obtain F5,422 5 2.53 and p-value 5 .029. This is evidence of heteroskedasticity at the 5% 
level. We might want to compute heteroskedasticity-robust standard errors to account for this.

If we know how the error variance depends on the exogenous variables, we can use a 
weighted 2SLS procedure, essentially the same as in Section 8-4. After estimating a model for 
Var 1u 0z1, z2, . . . , zm 2 , we divide the dependent variable, the explanatory variables, and all the instru-
mental variables for observation i by "ĥi, where ĥi denotes the estimated variance. (The constant, 
which is both an explanatory variable and an IV, is divided by "ĥi; see Section 8-4.) Then, we apply 
2SLS on the transformed equation using the transformed instruments.

15-7 Applying 2SLS to Time Series Equations
When we apply 2SLS to time series data, many of the considerations that arose for OLS in Chapters 
10, 11, and 12 are relevant. Write the structural equation for each time period as

	 yt 5 b0 1 b1xt1 1 p 1 bk xtk 1 ut,	 [15.52]

where one or more of the explanatory variables xtj might be correlated with ut. Denote the set of exog-
enous variables by zt1, p , ztm:

	 E 1ut 2 5 0, Cov 1ztj, ut 2 5 0,    j 5 1, . . . , m.	

Any exogenous explanatory variable is also a ztj. For 
identification, it is necessary that m $ k (we have as 
many exogenous variables as explanatory variables).

The mechanics of 2SLS are identical for time 
series or cross-sectional data, but for time series 
data the statistical properties of 2SLS depend on 
the trending and correlation properties of the under-
lying sequences. In particular, we must be careful 
to include trends if we have trending dependent or 
explanatory variables. Since a time trend is exoge-
nous, it can always serve as its own instrumental var-
iable. The same is true of seasonal dummy variables, 
if monthly or quarterly data are used.

Series that have strong persistence (have unit 
roots) must be used with care, just as with OLS. 
Often, differencing the equation is warranted before 
estimation, and this applies to the instruments as well.

Under analogs of the assumptions in Chapter 11 for the asymptotic properties of OLS, 2SLS 
using time series data is consistent and asymptotically normally distributed. In fact, if we replace the 
explanatory variables with the instrumental variables in stating the assumptions, we only need to add 
the identification assumptions for 2SLS. For example, the homoskedasticity assumption is stated as

	 E 1u2
t 0zt1, . . . , ztm 2 5 s2,	 [15.53]

A model to test the effect of growth in gov-
ernment spending on growth in output is

 gGDPt 5 b0 1 b1gGOVt 1 b2INVRATt

 1 b3gLABt 1 ut,

where g indicates growth, GDP is real gross 
domestic product, GOV is real government 
spending, INVRAT is the ratio of gross do-
mestic investment to GDP, and LAB is the 
size of the labor force. [See equation (6) 
in Ram (1986).] Under what assumptions 
would a dummy variable indicating whether 
the president in year t 2 1 is a Republican 
be a suitable IV for gGOVt?

Going Further 15.4
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and the no serial correlation assumption is stated as

	 E 1utus 0zt, zs 2 5 0    for all t 2 s,	 [15.54]

where zt denotes all exogenous variables at time t. A full statement of the assumptions is given in the 
chapter appendix. We will provide examples of 2SLS for time series problems in Chapter 16; see also 
Computer Exercise C4.

As in the case of OLS, the no serial correlation assumption can often be violated with time series 
data. Fortunately, it is very easy to test for AR(1) serial correlation. If we write ut 5 rut21 1 et and 
plug this into equation (15.52), we get

	 yt 5 b0 1 b1xt1 1 p 1 bkxtk 1 rut21 1 et, t $ 2.	 [15.55]

To test H0: r1 5 0, we must replace ut21 with the 2SLS residuals, ût21. Further, if xtj is endogenous in 
(15.52), then it is endogenous in (15.55), so we still need to use an IV. Because et is uncorrelated with 
all past values of ut, ût21 can be used as its own instrument.

Testing for AR(1) Serial Correlation after 2SLS:

	 (i)	 Estimate (15.52) by 2SLS and obtain the 2SLS residuals, ût.

	(ii)	 Estimate

	 yt 5 b0 1 b1xt1 1 p 1 bkxtk 1 rût21 1 errort,    t 5 2, . . . , n	

by 2SLS, using the same instruments from part (i), in addition to ût21. Use the t statistic on r̂ to test 
H0: r 5 0.

As with the OLS version of this test from Chapter 12, the t statistic only has asymptotic justifica-
tion, but it tends to work well in practice. A heteroskedasticity-robust version can be used to guard 
against heteroskedasticity. Further, lagged residuals can be added to the equation to test for higher 
forms of serial correlation using a joint F test.

What happens if we detect serial correlation? Some econometrics packages will compute standard 
errors that are robust to fairly general forms of serial correlation and heteroskedasticity. This is a nice, 
simple way to go if your econometrics package does this. The computations are very similar to those 
in Section 12-5 for OLS. [See Wooldridge (1995) for formulas and other computational methods.]

An alternative is to use the AR(1) model and correct for serial correlation. The procedure is 
similar to that for OLS and places additional restrictions on the instrumental variables. The quasi-
differenced equation is the same as in equation (12.32):

	 y|t 5 b0 11 2 r 2 1 b1x|t1 1 p 1 bkx|tk 1 et,    t $ 2,	 [15.56]

where x|tj 5 xtj 2 rxt21, j. (We can use the t 5 1 observation just as in Section 12-3, but we omit that for 
simplicity here.) The question is: What can we use as instrumental variables? It seems natural to use the 
quasi-differenced instruments, z|tj 5 ztj 2 rzt21, j. This only works, however, if in (15.52) the original 
error ut is uncorrelated with the instruments at times t, t 2 1, and t 1 1. That is, the instrumental variables 
must be strictly exogenous in (15.52). This rules out lagged dependent variables as IVs, for example. It 
also eliminates cases where future movements in the IVs react to current and past changes in the error, ut.

2SLS with AR(1) Errors:

	 (i)	 Estimate (15.52) by 2SLS and obtain the 2SLS residuals, ût, t 5 1, 2, . . . , n.

	(ii)	 Obtain r̂ from the regression of ût on ût21 t 5 2, . . . , n and construct the quasi-differenced vari-
ables y|t 5 yt 2 r̂yt21, x|tj 5 xtj 2 r̂xt21, j, and z|tj 5 ztj 2 r̂zt21, j for t $ 2. (Remember, in most 
cases, some of the IVs will also be explanatory variables.)

	(iii)	Estimate (15.56) (where r is replaced with r̂) by 2SLS, using the z|tj as the instruments. 
Assuming that (15.56) satisfies the 2SLS assumptions in the chapter appendix, the usual 2SLS 
test statistics are asymptotically valid.
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We can also use the first time period as in Prais-Winsten estimation of the model with exogenous 
explanatory variables. The transformed variables in the first time period—the dependent variable, 
explanatory variables, and instrumental variables—are obtained simply by multiplying all first-period 
values by 11 2 r̂ 2 1/2. (See also Section 12-3.)

15-8 Applying 2SLS to Pooled Cross Sections and Panel Data
Applying instrumental variables methods to independently pooled cross sections raises no new dif-
ficulties. As with models estimated by OLS, we should often include time period dummy variables to 
allow for aggregate time effects. These dummy variables are exogenous—because the passage of time 
is exogenous—and so they act as their own instruments.

Example 15.9	 Effect of Education on Fertility

In Example 13.1, we used the pooled cross section in FERTIL1 to estimate the effect of education on 
women’s fertility, controlling for various other factors. As in Sander (1992), we allow for the possibil-
ity that educ is endogenous in the equation. As instrumental variables for educ, we use mother’s and 
father’s education levels (meduc, feduc). The 2SLS estimate of beduc is 2.153 1se 5 .039 2 , compared 
with the OLS estimate 2.128 1se 5 .018 2 . The 2SLS estimate shows a somewhat larger effect of 
education on fertility, but the 2SLS standard error is over twice as large as the OLS standard error. 
(In fact, the 95% confidence interval based on 2SLS easily contains the OLS estimate.) The OLS 
and 2SLS estimates of beduc are not statistically different, as can be seen by testing for endogeneity 
of educ as in Section 15-5: when the reduced form residual, v̂2, is included with the other regressors 
in Table 13.1 (including educ), its t statistic is .702, which is not significant at any reasonable level. 
Therefore, in this case, we conclude that the difference between 2SLS and OLS could be entirely due 
to sampling error.

Instrumental variables estimation can be combined with panel data methods, particularly first 
differencing, to estimate parameters consistently in the presence of unobserved effects and endogene-
ity in one or more time-varying explanatory variables. The following simple example illustrates this 
combination of methods.

Example 15.10	 Job Training and Worker Productivity

Suppose we want to estimate the effect of another hour of job training on worker productivity. For the 
two years 1987 and 1988, consider the simple panel data model

	 log 1scrapit 2 5 b0 1 d0d88t 1 b1hrsempit 1 ai 1 uit, t 5 1, 2,	

where scrapit is firm i’s scrap rate in year t and hrsempit is hours of job training per employee. As 
usual, we allow different year intercepts and a constant, unobserved firm effect, ai.

For the reasons discussed in Section 13-2, we might be concerned that hrsempit is correlated with ai,  
the latter of which contains unmeasured worker ability. As before, we difference to remove ai:

	 Dlog 1scrapi 2 5 d0 1 b1Dhrsempi 1 Dui.	 [15.57]

Normally, we would estimate this equation by OLS. But what if Dui is correlated with Dhrsempi? For 
example, a firm might hire more skilled workers, while at the same time reducing the level of job train-
ing. In this case, we need an instrumental variable for Dhrsempi. Generally, such an IV would be hard to 
find, but we can exploit the fact that some firms received job training grants in 1988. If we assume that 
grant designation is uncorrelated with Dui—something that is reasonable, because the grants were given 
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at the beginning of 1988—then Dgranti is valid as an IV, provided Dhrsemp and Dgrant are correlated. 
Using the data in JTRAIN differenced between 1987 and 1988, the first stage regression is

 Dhrsemp 5 .51 1 27.88 Dgrant

 11.56 2  13.13 2
 n 5 45, R2 5 .392.

This confirms that the change in hours of job training per employee is strongly positively related to 
receiving a job training grant in 1988. In fact, receiving a job training grant increased per-employee 
training by almost 28 hours, and grant designation accounted for almost 40% of the variation in 
Dhrsemp. Two stage least squares estimation of (15.57) gives

 Dlog 1scrap 2 5 2.033 2  .014 Dhrsemp

 1 .127 2  1 .008 2
 n 5 45, R2 5 .016.

This means that 10 more hours of job training per worker are estimated to reduce the scrap rate 
by about 14%. For the firms in the sample, the average amount of job training in 1988 was about 
17 hours per worker, with a minimum of zero and a maximum of 88.

For comparison, OLS estimation of (15.57) gives b̂1 5 2.0076 1se 5 .0045 2 , so the 2SLS esti-
mate of b1 is almost twice as large in magnitude and is slightly more statistically significant.

When T $ 3, the differenced equation may contain serial correlation. The same test and cor-
rection for AR(1) serial correlation from Section 15-7 can be used, where all regressions are pooled 
across i as well as t. Because we do not want to lose an entire time period, the Prais-Winsten transfor-
mation should be used for the initial time period.

Unobserved effects models containing lagged dependent variables also require IV methods for 
consistent estimation. The reason is that, after differencing, Dyi, t21 is correlated with Duit because 
yi,t21 and ui,t21 are correlated. We can use two or more lags of y as IVs for Dyi, t21. [See Wooldridge 
(2010, Chapter 11) for details.]

Instrumental variables after differencing can be used on matched pairs samples as well. Ashenfelter 
and Krueger (1994) differenced the wage equation across twins to eliminate unobserved ability:

	 log 1wage2 2 2  log 1wage1 2 5 d0 1 b1 1educ2,2 2 educ1,1 2 1 1u2 2 u1 2 ,
where educ1, 1 is years of schooling for the first twin as reported by the first twin and educ2, 2 is years 
of schooling for the second twin as reported by the second twin. To account for possible measure-
ment error in the self-reported schooling measures, Ashenfelter and Krueger used 1educ2,1 2 educ1,2 2  
as an IV for 1educ2,2 2 educ1,1 2 , where educ2,1 is years of schooling for the second twin as reported 
by the first twin and educ1, 2 is years of schooling for the first twin as reported by the second twin. 
The IV estimate of b1 is .167 1 t 5 3.88 2 , compared with the OLS estimate on the first differences of 
.092 1 t 5 3.83 2  [see Ashenfelter and Krueger (1994, Table 3)].

Summary
In Chapter 15, we have introduced the method of instrumental variables as a way to estimate the param-
eters in a linear model consistently when one or more explanatory variables are endogenous. An instrumen-
tal variable must have two properties: (1) it must be exogenous, that is, uncorrelated with the error term of 
the structural equation; (2) it must be partially correlated with the endogenous explanatory variable. Find-
ing a variable with these two properties is usually challenging.
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The method of two stage least squares, which allows for more instrumental variables than we have 
explanatory variables, is used routinely in the empirical social sciences. When used properly, it can allow 
us to estimate ceteris paribus effects in the presence of endogenous explanatory variables. This is true in 
cross-sectional, time series, and panel data applications. But when instruments are poor—which means 
they are correlated with the error term, only weakly correlated with the endogenous explanatory variable, 
or both—then 2SLS can be worse than OLS.

When we have valid instrumental variables, we can test whether an explanatory variable is endog-
enous, using the test in Section 15-5. In addition, though we can never test whether all IVs are exogenous, 
we can test that at least some of them are—assuming that we have more instruments than we need for 
consistent estimation (that is, the model is overidentified). Heteroskedasticity and serial correlation can be 
tested for and dealt with using methods similar to the case of models with exogenous explanatory variables.

In this chapter, we used omitted variables and measurement error to illustrate the method of instru-
mental variables. IV methods are also indispensable for simultaneous equations models, which we will 
cover in Chapter 16.

Key Terms
Endogenous Explanatory 

Variables
Errors-in-Variables
Exclusion Restrictions
Exogenous Explanatory Variables
Exogenous Variables
First Stage
Identification

Instrument
Instrumental Variable
Instrumental Variables (IV) 

Estimator
Instrument Exogeneity
Instrument Relevance
Natural Experiment
Omitted Variables

Order Condition
Overidentifying Restrictions
Rank Condition
Reduced Form Equation
Structural Equation
Two Stage Least Squares (2SLS) 

Estimator
Weak Instruments

Problems
1	 Consider a simple model to estimate the effect of personal computer (PC) ownership on college grade 

point average for graduating seniors at a large public university:

GPA 5 b0 1 b1PC 1 u,

where PC is a binary variable indicating PC ownership.
(i)	 Why might PC ownership be correlated with u?
(ii)	 Explain why PC is likely to be related to parents’ annual income. Does this mean parental 

income is a good IV for PC? Why or why not?
(iii)	 Suppose that, four years ago, the university gave grants to buy computers to roughly one-

half of the incoming students, and the students who received grants were randomly chosen. 
Carefully explain how you would use this information to construct an instrumental variable 
for PC.

2	 Suppose that you wish to estimate the effect of class attendance on student performance, as in 
Example 6.3. A basic model is

stndfnl 5 b0 1 b1atndrte 1 b2priGPA 1 b3ACT 1 u,

where the variables are defined as in Chapter 6.
(i)	 Let dist be the distance from the students’ living quarters to the lecture hall. Do you think dist is 

uncorrelated with u?
(ii)	 Assuming that dist and u are uncorrelated, what other assumption must dist satisfy to be a valid 

IV for atndrte?
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(iii)	 Suppose, as in equation (6.18), we add the interaction term priGPA·atndrte:

stndfnl 5 b0 1 b1atndrte 1 b2priGPA 1 b3ACT 1 b4priGPA 
#
 atndrte 1 u.

If atndrte is correlated with u, then, in general, so is priGPA·atndrte. What might be a good IV for 
priGPA·atndrte? [Hint: If E(u|priGPA, ACT, dist) = 0, as happens when priGPA, ACT, and dist are all 
exogenous, then any function of priGPA and dist is uncorrelated with u.]

3	 Consider the simple regression model

	 y 5 b0 1 b1x 1 u

and let z be a binary instrumental variable for x. Use (15.10) to show that the IV estimator b̂1 can be 
written as

	 b̂1 5 1y1 2 y0 2 / 1x1 2 x0 2 ,
where y0 and x0 are the sample averages of yi and xi over the part of the sample with zi 5 0, and where 
y1 and x1 are the sample averages of yi and xi over the part of the sample with zi 5 1. This estimator, 
known as a grouping estimator, was first suggested by Wald (1940).

4	 Suppose that, for a given state in the United States, you wish to use annual time series data to estimate 
the effect of the state-level minimum wage on the employment of those 18 to 25 years old (EMP). A 
simple model is

gEMPt 5 b0 1 b1gMINt 1 b2gPOPt 1 b3gGSPt 1 b4gGDPt 1 ut,

where MINt is the minimum wage, in real dollars; POPt is the population from 18 to 25 years old; GSPt 
is gross state product; and GDPt is U.S. gross domestic product. The g prefix indicates the growth rate 
from year t 2 1 to year t, which would typically be approximated by the difference in the logs.
(i)	 If we are worried that the state chooses its minimum wage partly based on unobserved (to us) 

factors that affect youth employment, what is the problem with OLS estimation?
(ii)	 Let USMINt be the U.S. minimum wage, which is also measured in real terms. Do you think 

gUSMINt is uncorrelated with ut?
(iii)	 By law, any state’s minimum wage must be at least as large as the U.S. minimum. Explain why 

this makes gUSMINt a potential IV candidate for gMINt.

5	 Refer to equations (15.19) and (15.20). Assume that su 5 sx, so that the population variation in the 
error term is the same as it is in x. Suppose that the instrumental variable, z, is slightly correlated with 
u: Corr 1z, u 2 5 .1. Suppose also that z and x have a somewhat stronger correlation: Corr 1z, x 2 5 .2.
(i)	 What is the asymptotic bias in the IV estimator?
(ii)	 How much correlation would have to exist between x and u before OLS has more asymptotic 

bias than 2SLS?

6	 (i)   � In the model with one endogenous explanatory variable, one exogenous explanatory variable, 
and one extra exogenous variable, take the reduced form for y2 (15.26), and plug it into the struc-
tural equation (15.22). This gives the reduced form for y1:

	 y1 5 a0 1 a1z1 1 a2z2 1 v1.

Find the aj in terms of the bj and the pj.
(ii)	 Find the reduced form error, v1, in terms of u1, v2, and the parameters.
(iii)	 How would you consistently estimate the aj?

7	 The following is a simple model to measure the effect of a school choice program on standardized test 
performance [see Rouse (1998) for motivation and Computer Exercise C11 for an analysis of a subset 
of Rouse’s data]:

	 score 5 b0 1 b1choice 1 b2faminc 1 u1,
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where score is the score on a statewide test, choice is a binary variable indicating whether a student 
attended a choice school in the last year, and faminc is family income. The IV for choice is grant, the 
dollar amount granted to students to use for tuition at choice schools. The grant amount differed by 
family income level, which is why we control for faminc in the equation.
(i)	 Even with faminc in the equation, why might choice be correlated with u1?
(ii)	 If within each income class, the grant amounts were assigned randomly, is grant uncorrelated with u1?
(iii)	 Write the reduced form equation for choice. What is needed for grant to be partially correlated 

with choice?
(iv)	 Write the reduced form equation for score. Explain why this is useful. (Hint: How do you inter-

pret the coefficient on grant?)

8	 Suppose you want to test whether girls who attend a girls’ high school do better in math than girls who 
attend coed schools. You have a random sample of senior high school girls from a state in the United 
States, and score is the score on a standardized math test. Let girlhs be a dummy variable indicating 
whether a student attends a girls’ high school.
(i)	 What other factors would you control for in the equation? (You should be able to reasonably 

collect data on these factors.)
(ii)	 Write an equation relating score to girlhs and the other factors you listed in part (i).
(iii)	 Suppose that parental support and motivation are unmeasured factors in the error term in  

part (ii). Are these likely to be correlated with girlhs? Explain.
(iv)	 Discuss the assumptions needed for the number of girls’ high schools within a 20-mile radius of 

a girl’s home to be a valid IV for girlhs.
(v)	 Suppose that, when you estimate the reduced form for girlshs, you find that the coefficient on 

numghs (the number of girls’ high schools within a 20-mile radius) is negative and statistically 
significant. Would you feel comfortable proceeding with IV estimation where numghs is used as 
an IV for girlshs? Explain.

9	 Suppose that, in equation (15.8), you do not have a good instrumental variable candidate for skipped. 
But you have two other pieces of information on students: combined SAT score and cumulative GPA 
prior to the semester. What would you do instead of IV estimation?

10	 In a recent article, Evans and Schwab (1995) studied the effects of attending a Catholic high school on 
the probability of attending college. For concreteness, let college be a binary variable equal to unity if a 
student attends college, and zero otherwise. Let CathHS be a binary variable equal to one if the student 
attends a Catholic high school. A linear probability model is

	 college 5 b0 1 b1CathHS 1 other factors 1 u,

where the other factors include gender, race, family income, and parental education.
(i)	 Why might CathHS be correlated with u?
(ii)	 Evans and Schwab have data on a standardized test score taken when each student was a sopho-

more. What can be done with this variable to improve the ceteris paribus estimate of attending a 
Catholic high school?

(iii)	 Let CathRel be a binary variable equal to one if the student is Catholic. Discuss the two require-
ments needed for this to be a valid IV for CathHS in the preceding equation. Which of these can 
be tested?

(iv)	 Not surprisingly, being Catholic has a significant positive effect on attending a Catholic high 
school. Do you think CathRel is a convincing instrument for CathHS?

11	 Consider a simple time series model where the explanatory variable has classical measurement error:

	  yt 5 b0 1 b1x
p
t 1 ut	 [15.58]

 xt 5 xp
t 1 et,
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where ut has zero mean and is uncorrelated with xp
t  and et. We observe yt and xt only. Assume that et has 

zero mean and is uncorrelated with xp
t  and that xp

t  also has a zero mean (this last assumption is only to 
simplify the algebra).
(i)	 Write xp

t 5 xt 2 et and plug this into (15.58). Show that the error term in the new equation, say, 
vt, is negatively correlated with xt if b1 . 0. What does this imply about the OLS estimator of 
b1 from the regression of yt on xt?

(ii)	 In addition to the previous assumptions, assume that ut and et are uncorrelated with all past 
values of xp

t  and et; in particular, with xp
t21 and et21. Show that E 1xt21vt 2 5 0 where vt is the 

error term in the model from part (i).
(iii)	 Are xt and xt21 likely to be correlated? Explain.
(iv)	 What do parts (ii) and (iii) suggest as a useful strategy for consistently estimating b0 and b1?

Computer Exercises
C1	 Use the data in WAGE2 for this exercise.

(i)	 In Example 15.2, if sibs is used as an instrument for educ, the IV estimate of the return to 
education is .122. To convince yourself that using sibs as an IV for educ is not the same as just 
plugging sibs in for educ and running an OLS regression, run the regression of log(wage) on 
sibs and explain your findings.

(ii)	 The variable brthord is birth order (brthord is one for a first-born child, two for a second-born 
child, and so on). Explain why educ and brthord might be negatively correlated. Regress educ 
on brthord to determine whether there is a statistically significant negative correlation.

(iii)	 Use brthord as an IV for educ in equation (15.1). Report and interpret the results.
(iv)	 Now, suppose that we include number of siblings as an explanatory variable in the wage 

equation; this controls for family background, to some extent:

	 log 1wage 2 5 b0 1 b1educ 1 b2sibs 1 u.

Suppose that we want to use brthord as an IV for educ, assuming that sibs is exogenous. The 
reduced form for educ is

	 educ 5 p0 1 p1sibs 1 p2brthord 1 v.

	 State and test the identification assumption.
(v)	 Estimate the equation from part (iv) using brthord as an IV for educ (and sibs as its own IV). 

Comment on the standard errors for b̂educ and b̂sibs.
(vi)	 Using the fitted values from part (iv), educ, compute the correlation between educ and sibs. Use 

this result to explain your findings from part (v).

C2	 The data in FERTIL2 include, for women in Botswana during 1988, information on number of chil-
dren, years of education, age, and religious and economic status variables.
(i)	 Estimate the model

	 children 5 b0 1 b1educ 1 b2age 1 b3age2 1 u

by OLS and interpret the estimates. In particular, holding age fixed, what is the estimated effect 
of another year of education on fertility? If 100 women receive another year of education, how 
many fewer children are they expected to have?

(ii)	 The variable frsthalf is a dummy variable equal to one if the woman was born during the 
first six months of the year. Assuming that frsthalf is uncorrelated with the error term from 
part (i), show that frsthalf is a reasonable IV candidate for educ. (Hint: You need to do a 
regression.)

(iii)	 Estimate the model from part (i) by using frsthalf as an IV for educ. Compare the estimated 
effect of education with the OLS estimate from part (i).
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(iv)	 Add the binary variables electric, tv, and bicycle to the model and assume these are exogenous. 
Estimate the equation by OLS and 2SLS and compare the estimated coefficients on educ. Interpret 
the coefficient on tv and explain why television ownership has a negative effect on fertility.

C3	 Use the data in CARD for this exercise.
(i)	 The equation we estimated in Example 15.4 can be written as

	 log 1wage 2 5 b0 1 b1educ 1 b2exper 1 p 1 u,

where the other explanatory variables are listed in Table 15.1. In order for IV to be consistent, 
the IV for educ, nearc4, must be uncorrelated with u. Could nearc4 be correlated with things in 
the error term, such as unobserved ability? Explain.

(ii)	 For a subsample of the men in the data set, an IQ score is available. Regress IQ on nearc4 to 
check whether average IQ scores vary by whether the man grew up near a four-year college. 
What do you conclude?

(iii)	 Now, regress IQ on nearc4, smsa66, and the 1966 regional dummy variables reg662, . . . , 
reg669. Are IQ and nearc4 related after the geographic dummy variables have been partialled 
out? Reconcile this with your findings from part (ii).

(iv)	 From parts (ii) and (iii), what do you conclude about the importance of controlling for smsa66 
and the 1966 regional dummies in the log(wage) equation?

C4	 Use the data in INTDEF for this exercise. A simple equation relating the three-month T-bill rate to the 
inflation rate (constructed from the Consumer Price Index) is

	 i3t 5 b0 1 b1inft 1 ut.

(i)	 Estimate this equation by OLS, omitting the first time period for later comparisons. Report the 
results in the usual form.

(ii)	 Some economists feel that the Consumer Price Index mismeasures the true rate of inflation, so that 
the OLS from part (i) suffers from measurement error bias. Reestimate the equation from part (i), 
using inft21 as an IV for inft. How does the IV estimate of b1 compare with the OLS estimate?

(iii)	 Now, first difference the equation:

	 Di3t 5 b0 1 b1Dinft 1 Dut.

	 Estimate this by OLS and compare the estimate of b1 with the previous estimates.
(iv)	 Can you use Dinft21 as an IV for Dinft in the differenced equation in part (iii)? Explain.  

(Hint: Are Dinft and Dinft21 sufficiently correlated?)

C5	 Use the data in CARD for this exercise.
(i)	 In Table 15.1, the difference between the IV and OLS estimates of the return to education 

is economically important. Obtain the reduced form residuals, v̂2, from the reduced form 
regression educ on nearc4, exper, exper2, black, smsa, south, smsa66, reg662, …, reg669—see 
Table 15.1. Use these to test whether educ is exogenous; that is, determine if the difference 
between OLS and IV is statistically significant.

(ii)	 Estimate the equation by 2SLS, adding nearc2 as an instrument. Does the coefficient on educ 
change much?

(iii)	 Test the single overidentifying restriction from part (ii).

C6	 Use the data in MURDER for this exercise. The variable mrdrte is the murder rate, that is, the number 
of murders per 100,000 people. The variable exec is the total number of prisoners executed for the cur-
rent and prior two years; unem is the state unemployment rate.
(i)	 How many states executed at least one prisoner in 1991, 1992, or 1993? Which state had the 

most executions?
(ii)	 Using the two years 1990 and 1993, do a pooled regression of mrdrte on d93, exec, and unem. 

What do you make of the coefficient on exec?
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(iii)	 Using the changes from 1990 to 1993 only (for a total of 51 observations), estimate the equation

	 Dmrdrte 5 d0 1 b1Dexec 1 b2Dunem 1 Du

	 by OLS and report the results in the usual form. Now, does capital punishment appear to have a 
deterrent effect?

(iv)	 The change in executions may be at least partly related to changes in the expected murder rate, 
so that Dexec is correlated with Du in part (iii). It might be reasonable to assume that Dexec21 
is uncorrelated with Du. (After all, Dexec21 depends on executions that occurred three or more 
years ago.) Regress Dexec on Dexec21 to see if they are sufficiently correlated; interpret the 
coefficient on Dexec21.

(v)	 Reestimate the equation from part (iii), using Dexec21 as an IV for Dexec. Assume that Dunem 
is exogenous. How do your conclusions change from part (iii)?

C7	 Use the data in PHILLIPS for this exercise.
(i)	 In Example 11.5, we estimated an expectations augmented Phillips curve of the form

	 Dinft 5 b0 1 b1unemt 1 et,

	 where Dinft 5 inft 2 inft21. In estimating this equation by OLS, we assumed that the supply shock, 
et, was uncorrelated with unemt. If this is false, what can be said about the OLS estimator of b1?

(ii)	 Suppose that et is unpredictable given all past information: E 1et 0 inft21, unemt21, . . . 2 5 0. 
Explain why this makes unemt21 a good IV candidate for unemt.

(iii)	 Regress unemt on unemt21. Are unemt and unemt21 significantly correlated?
(iv)	 Estimate the expectations augmented Phillips curve by IV. Report the results in the usual form 

and compare them with the OLS estimates from Example 11.5.

C8	 Use the data in 401KSUBS for this exercise. The equation of interest is a linear probability model:

	 pira 5 b0 1 b1p401k 1 b2inc 1 b3inc2 1 b4age 1 b5age2 1 u.

The goal is to test whether there is a tradeoff between participating in a 401(k) plan and having 
an individual retirement account (IRA). Therefore, we want to estimate b1.
(i)	 Estimate the equation by OLS and discuss the estimated effect of p401k.
(ii)	 For the purposes of estimating the ceteris paribus tradeoff between participation in two different 

types of retirement savings plans, what might be a problem with ordinary least squares?
(iii)	 The variable e401k is a binary variable equal to one if a worker is eligible to participate 

in a 401(k) plan. Explain what is required for e401k to be a valid IV for p401k. Do these 
assumptions seem reasonable?

(iv)	 Estimate the reduced form for p401k and verify that e401k has significant partial correlation 
with p401k. Since the reduced form is also a linear probability model, use a heteroskedasticity-
robust standard error.

(v)	 Now, estimate the structural equation by IV and compare the estimate of b1 with the OLS 
estimate. Again, you should obtain heteroskedasticity-robust standard errors.

(vi)	 Test the null hypothesis that p401k is in fact exogenous, using a heteroskedasticity-robust test.

C9	 The purpose of this exercise is to compare the estimates and standard errors obtained by correctly 
using 2SLS with those obtained using inappropriate procedures. Use the data file WAGE2.
(i)	 Use a 2SLS routine to estimate the equation

	 log 1wage 2 5 b0 1 b1educ 1 b2exper 1 b3tenure 1 b4black 1 u,

	 where sibs is the IV for educ. Report the results in the usual form.
(ii)	 Now, manually carry out 2SLS. That is, first regress educi on sibsi, experi, tenurei, and blacki  

and obtain the fitted values, educi, i 5 1, . . . , n. Then, run the second stage regression log 1wagei 2   
on educi, experi, tenurei, and blacki, i 5 1, . . . , n. Verify that the b̂j are identical to those obtained 
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from part (i), but that the standard errors are somewhat different. The standard errors obtained 
from the second stage regression when manually carrying out 2SLS are generally inappropriate.

(iii)	 Now, use the following two-step procedure, which generally yields inconsistent parameter 
estimates of the bj, and not just inconsistent standard errors. In step one, regress educi on sibsi 
only and obtain the fitted values, say educi. (Note that this is an incorrect first stage regression.) 
Then, in the second step, run the regression of log 1wagei 2  on educi, experi, tenurei, and 
blacki, i 5 1, . . . , n. How does the estimate from this incorrect, two-step procedure compare 
with the correct 2SLS estimate of the return to education?

C10	 Use the data in HTV for this exercise.
(i)	 Run a simple OLS regression of log(wage) on educ. Without controlling for other factors, what 

is the 95% confidence interval for the return to another year of education?
(ii)	 The variable ctuit, in thousands of dollars, is the change in college tuition facing students from 

age 17 to age 18. Show that educ and ctuit are essentially uncorrelated. What does this say 
about ctuit as a possible IV for educ in a simple regression analysis?

(iii)	 Now, add to the simple regression model in part (i) a quadratic in experience and a full set of 
regional dummy variables for current residence and residence at age 18. Also include the urban 
indicators for current and age 18 residences. What is the estimated return to a year of education?

(iv)	 Again using ctuit as a potential IV for educ, estimate the reduced form for educ. [Naturally, the 
reduced form for educ now includes the explanatory variables in part (iii).] Show that ctuit is 
now statistically significant in the reduced form for educ.

(v)	 Estimate the model from part (iii) by IV, using ctuit as an IV for educ. How does the confidence 
interval for the return to education compare with the OLS CI from part (iii)?

(vi)	 Do you think the IV procedure from part (v) is convincing?

C11	 The data set in VOUCHER, which is a subset of the data used in Rouse (1998), can be used to estimate 
the effect of school choice on academic achievement. Attendance at a choice school was paid for by a 
voucher, which was determined by a lottery among those who applied. The data subset was chosen so 
that any student in the sample has a valid 1994 math test score (the last year available in Rouse’s sample). 
Unfortunately, as pointed out by Rouse, many students have missing test scores, possibly due to attrition 
(that is, leaving the Milwaukee public school district). These data include students who applied to the 
voucher program and were accepted, students who applied and were not accepted, and students who did 
not apply. Therefore, even though the vouchers were chosen by lottery among those who applied, we do 
not necessarily have a random sample from a population where being selected for a voucher has been ran-
domly determined. (An important consideration is that students who never applied to the program may be 
systematically different from those who did—and in ways that we cannot know based on the data.)

Rouse (1998) uses panel data methods of the kind we discussed in Chapter 14 to allow student 
fixed effects; she also uses instrumental variables methods. This problem asks you to do a cross-
sectional analysis which winning the lottery for a voucher acts as an instrumental variable for attending 
a choice school. Actually, because we have multiple years of data on each student, we construct two 
variables. The first, choiceyrs, is the number of years from 1991 to 1994 that a student attended a choice 
school; this variable ranges from zero to four. The variable selectyrs indicates the number of years a stu-
dent was selected for a voucher. If the student applied for the program in 1990 and received a voucher 
then selectyrs 5 4; if he or she applied in 1991 and received a voucher then selectyrs 5 3; and so on. 
The outcome of interest is mnce, the student’s percentile score on a math test administered in 1994.
(i)	 Of the 990 students in the sample, how many were never awarded a voucher? How many had a 

voucher available for four years? How many students actually attended a choice school for four 
years?

(ii)	 Run a simple regression of choiceyrs on selectyrs. Are these variables related in the direction 
you expected? How strong is the relationship? Is selectyrs a sensible IV candidate for choiceyrs?

(iii)	 Run a simple regression of mnce on choiceyrs. What do you find? Is this what you expected? 
What happens if you add the variables black, hispanic, and female?
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(iv)	 Why might choiceyrs be endogenous in an equation such as

	 mnce 5 b0 1 b1choiceyrs 1 b2black 1 b3hispanic 1 b4female 1 u1?

(v)	 Estimate the equation in part (iv) by instrumental variables, using selectyrs as the IV for 
choiceyrs. Does using IV produce a positive effect of attending a choice school? What do you 
make of the coefficients on the other explanatory variables?

(vi)	 To control for the possibility that prior achievement affects participating in the lottery (as well 
as predicting attrition), add mnce90—the math score in 1990—to the equation in part (iv). 
Estimate the equation by OLS and IV, and compare the results for b1. For the IV estimate, how 
much is each year in a choice school worth on the math percentile score? Is this a practically 
large effect?

(vii)	 Why is the analysis from part (vi) not entirely convincing? [Hint: Compared with part (v), what 
happens to the number of observations, and why?]

(viii)	 The variables choiceyrs1, choiceyrs2, and so on are dummy variables indicating the different 
number of years a student could have been in a choice school (from 1991 to 1994). The dummy 
variables selectyrs1, selectyrs2, and so on have a similar definition, but for being selected from 
the lottery. Estimate the equation

 mnce 5 b0 1 b1choiceyrs1 1 b2choiceyrs2 1 b3choiceyrs3 1 b4choiceyrs4

 1 b5black 1 b6hispanic 1 b7  
female 1 b8mnce90 1 u1

	 by IV, using as instruments the four selectyrs dummy variables. (As before, the variables black, 
hispanic, and female act as their own IVs.) Describe your findings. Do they make sense?

C12	 Use the data in CATHOLIC to answer this question. The model of interest is

	 math12 5 b0 1 b1cathhs 1 b2lfaminc 1 b3motheduc 1 b4fatheduc 1 u,

	 where cathhs is a binary indicator for whether a student attends a Catholic high school.
(i)	 How many students are in the sample? What percentage of these students attend a Catholic high 

school?
(ii)	 Estimate the above equation by OLS. What is the estimate of b1? What is its 95% confidence 

interval?
(iii)	 Using parcath as an instrument for cathhs, estimate the reduced form for cathhs. What is the  

t statistic for parcath? Is there evidence of a weak instrument problem?
(iv)	 Estimate the above equation by IV, using parcath as an IV for cathhs. How does the estimate 

and 95% CI compare with the OLS quantities?
(v)	 Test the null hypothesis that cathhs is exogenous. What is the p-value of the test?
(vi)	 Suppose you add the interaction between cathhs ? motheduc to the above model. 

Why is it generally endogenous? Why is pareduc ? motheduc a good IV candidate for 
cathhs ? motheduc?

(vii)	 Before you create the interactions in part (vi), first find the sample average of motheduc and 
create cathhs ? 1motheduc 2 motheduc 2  and parcath ? 1motheduc 2 motheduc 2 . Add the first 
interaction to the model and use the second as an IV. Of course, cathhs is also instrumented. Is 
the interaction term statistically significant?

(viii)	 Compare the coefficient on cathhs in (vii) to that in part (iv). Is including the interaction 
important for estimating the average partial effect?

C13	 Use the data in LABSUP to answer the following questions. These are data on almost 32,000 black 
or Hispanic women. Every woman in the sample is married. It is a subset of the data used in Angrist 
and Evans (1998). Our interest here is in determining how weekly hours worked, hours, changes with 
number of children (kids). All women in the sample have at least two children. The two potential 
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instrumental variables for kids, which is suspected as being endogenous, work to generate exogenous 
variation starting with two children. See the original article for further discussion.
(i)	 Estimate the equation

hours 5 b0 1 b1kids 1 b2 
nonmomi 1 b3educ 1 b4age 1 b5age2 1 b6 

black 1 b7hispan 1 u

	 by OLS and obtain the heteroskedasticity-robust standard errors. Interpret the coefficient on 
kids. Discuss its statistical significance.

(ii)	 A variable that Angrist and Evans propose as an instrument is samesex, a binary variable equal 
to one if the first two children are the same biological sex. What do you think is the argument 
for why it is a relevant instrument for kids?

(iii)	 Run the regression

kidsi on samesexi, nonmomii, educi, agei age2
i , blacki, hispani

	 and see if the story from part (ii) holds up. In particular, interepret the coefficient on samesex. 
How statistically significant is samesex?

(iv)	 Can you think of mechanisms by which samesex is correlated with u in the equation in part (i)? (It is 
fine to assume that biological sex is randomly determined.) [Hint: How might a family’s finances be 
affected based on whether they have two children of the same sex or two children of opposite sex?]

(v)	 Is it legitimate to check for exogeneity of samesex by adding it to the regression in part (i) and 
testing its significance? Explain.

(vi)	 Using samesex as an IV for kids, obtain the IV estimates of the equation in part (i). How does 
the kids coefficient compare with the OLS estimate? Is the IV estimate precise?

(vii)	 Now add multi2nd as an instrument. Obtain the F statistic from the first stage regression and 
determining whether samesex and multi2nd are sufficiently strong.

(viii)	 Using samesex and multi2nd both as instruments for kids, how does the 2SLS estimate compare 
with the OLS and IV estimates from the previous parts?

(ix)	 Using the estimation from part (viii), is there strong evidence that kids is endogenous in the 
hours equation?

(x)	 In part (viii), how many overidentification restrictions are there? Does the overidentification  
test pass?

Appendix 15A

15A.1 Assumptions for Two Stage Least Squares

This appendix covers the assumptions under which 2SLS has desirable large sample properties. We 
first state the assumptions for cross-sectional applications under random sampling. Then, we discuss 
what needs to be added for them to apply to time series and panel data.

15A.2 Assumption 2SLS.1 (Linear in Parameters)

The model in the population can be written as

y 5 b0 1 b1x1 1 b2x2 1 p 1 bkxk 1 u,

where b0, b1, p , bk are the unknown parameters (constants) of interest and u is an unobserved ran-
dom error or random disturbance term. The instrumental variables are denoted as zj.
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It is worth emphasizing that Assumption 2SLS.1 is virtually identical to MLR.1 (with the minor 
exception that 2SLS.1 mentions the notation for the instrumental variables, zj). In other words, the 
model we are interested in is the same as that for OLS estimation of the bj. Sometimes it is easy to 
lose sight of the fact that we can apply different estimation methods to the same model. Unfortu-
nately, it is not uncommon to hear researchers say “I estimated an OLS model” or “I used a 2SLS 
model.” Such statements are meaningless. OLS and 2SLS are different estimation methods that are 
applied to the same model. It is true that they have desirable statistical properties under different 
sets of assumptions on the model, but the relationship they are estimating is given by the equation in 
2SLS.1 (or MLR.1). The point is similar to that made for the unobserved effects panel data model 
covered in Chapters 13 and 14: pooled OLS, first differencing, fixed effects, and random effects are 
different estimation methods for the same model.

15A.3 Assumption 2SLS.2 (Random Sampling)

We have a random sample on y, the xj, and the zj.

15A.4 Assumption 2SLS.3 (Rank Condition)

(i) There are no perfect linear relationships among the instrumental variables. (ii) The rank condition 
for identification holds.

With a single endogenous explanatory variable, as in equation (15.42), the rank condition is eas-
ily described. Let z1, . . . , zm denote the exogenous variables, where zk, . . . , zm do not appear in the 
structural model (15.42). The reduced form of y2 is

y2 5 p0 1 p1z1 1 p2z2 1 p 1 pk21zk21 1 pkzk 1 p 1 pmzm 1 v2.

Then, we need at least one of pk, . . . , pm to be nonzero. This requires at least one exogenous 
variable that does not appear in (15.42) (the order condition). Stating the rank condition with two  
or more endogenous explanatory variables requires matrix algebra. [See Wooldridge (2010, 
Chapter 5).]

15A.5 Assumption 2SLS.4 (Exogenous Instrumental Variables)

The error term u has zero mean, and each IV is uncorrelated with u.
Remember that any xj that is uncorrelated with u also acts as an IV.

15A.6 Theorem 15A.1

Under Assumptions 2SLS.1 through 2SLS.4, the 2SLS estimator is consistent.

15A.7 Assumption 2SLS.5 (Homoskedasticity)

Let z denote the collection of all instrumental variables. Then, E 1u2 0z 2 5 s2.

15A.8 Theorem 15A.2

Under Assumptions 2SLS.1 through 2SLS.5, the 2SLS estimators are asymptotically normally dis-
tributed. Consistent estimators of the asymptotic variance are given as in equation (15.43), where s2 
is replaced with ŝ2 5 1n 2 k 2 1 221g n

i51 û2
i , and the ûi are the 2SLS residuals.

The 2SLS estimator is also the best IV estimator under the five assumptions given. We state the 
result here. A proof can be found in Wooldridge (2010, Chapter 5).

58860_ch15_hr_495-533.indd   532 10/18/18   4:43 PM



CHAPTER 15  Instrumental Variables Estimation and Two Stage Least Squares 533

15A.9 Theorem 15A.3

Under Assumptions 2SLS.1 through 2SLS.5, the 2SLS estimator is asymptotically efficient in the 
class of IV estimators that uses linear combinations of the exogenous variables as instruments.

If the homoskedasticity assumption does not hold, the 2SLS estimators are still asymptotically 
normal, but the standard errors (and t and F statistics) need to be adjusted; many econometrics pack-
ages do this routinely. Moreover, the 2SLS estimator is no longer the asymptotically efficient IV esti-
mator, in general. We will not study more efficient estimators here [see Wooldridge (2010, Chapter 8)].

For time series applications, we must add some assumptions. First, as with OLS, we must 
assume that all series (including the IVs) are weakly dependent: this ensures that the law of large 
numbers and the central limit theorem hold. For the usual standard errors and test statistics to be 
valid, as well as for asymptotic efficiency, we must add a no serial correlation assumption.

15A.10 Assumption 2SLS.6 (No Serial Correlation)

Equation (15.54) holds.
A similar no serial correlation assumption is needed in panel data applications. Tests and correc-

tions for serial correlation were discussed in Section 15-7.
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Simultaneous Equations 
Models

c h a p t e r  16

I
n the previous chapter, we showed how the method of instrumental variables can solve two kinds 

of endogeneity problems: omitted variables and measurement error. Conceptually, these problems 

are straightforward. In the omitted variables case, there is a variable (or more than one) that we 

would like to hold fixed when estimating the ceteris paribus effect of one or more of the observed 

explanatory variables. In the measurement error case, we would like to estimate the effect of certain 

explanatory variables on y, but we have mismeasured one or more variables. In both cases, we could 

estimate the parameters of interest by OLS if we could collect better data.

Another important form of endogeneity of explanatory variables is simultaneity. This arises 

when one or more of the explanatory variables is jointly determined with the dependent variable, 

typically through an equilibrium mechanism (as we will see later). In this chapter, we study methods 

for estimating simple simultaneous equations models (SEMs). Although a complete treatment of 

SEMs is beyond the scope of this text, we are able to cover models that are widely used.

The leading method for estimating simultaneous equations models is the method of instrumental 

variables. Therefore, the solution to the simultaneity problem is essentially the same as the IV 

solutions to the omitted variables and measurement error problems. However, crafting and interpreting 

SEMs is challenging. Therefore, we begin by discussing the nature and scope of simultaneous equa-

tions models in Section 16-1. In Section 16-2, we confirm that OLS applied to an equation in a 

simultaneous system is generally biased and inconsistent.

Section 16-3 provides a general description of identification and estimation in a two-equation 

system, while Section 16-4 briefly covers models with more than two equations. Simultaneous 
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equations models are used to model aggregate time series, and in Section 16-5 we include a discus-

sion of some special issues that arise in such models. Section 16-6 touches on simultaneous equations 

models with panel data.

16-1  The Nature of Simultaneous Equations Models
The most important point to remember in using simultaneous equations models is that each equation 
in the system should have a ceteris paribus, causal interpretation. Because we only observe the out-
comes in equilibrium, we are required to use counterfactual reasoning in constructing the equations 
of a simultaneous equations model. We must think in terms of potential as well as actual outcomes.

When there are only two states of the world—a worker does or does not participate in a job train-
ing program, say—we formally described the potential outcomes setting in Sections 2-7, 3-7, 7-6, and 
elsewhere. The framework for simultaneous equations models is more complicated because we must 
represent a continuum of alternative realities. For example, the demand for a product, say, milk, is a 
function of the price of milk (and other variables). A demand function for milk determines how much 
milk someone would purchase at each possible price. Rather than formally introduce a notation for a 
continuum of potential outcomes, for our purposes it suffices to be less formal and to illustrate coun-
terfactual thinking through examples.

The classic example of an SEM is a supply and demand equation for some commodity or input to 
production (such as labor). For concreteness, let hs denote the annual labor hours supplied by workers 
in agriculture, measured at the county level, and let w denote the average hourly wage offered to such 
workers. A simple labor supply function is 

	 hs 5 a1w 1 b1z1 1 u1,	 [16.1]

where z1 is some observed variable affecting labor supply—say, the average manufacturing wage in 
the county. The error term, u1, contains other factors that affect labor supply. [Many of these factors 
are observed and could be included in equation (16.1); to illustrate the basic concepts, we include 
only one such factor, z1.] Equation (16.1) is an example of a structural equation. This name comes 
from the fact that the labor supply function is derivable from economic theory and has a causal 
interpretation. The coefficient a1 measures how labor supply changes when the wage changes; if hs 
and w are in logarithmic form, a1 is the labor supply elasticity. Typically, we expect a1 to be posi-
tive (although economic theory does not rule out a1 # 0). Labor supply elasticities are important 
for determining how workers will change the number of hours they desire to work when tax rates on 
wage income change. If z1 is the manufacturing wage, we expect b1 # 0: other factors equal, if the 
manufacturing wage increases, more workers will go into manufacturing than into agriculture.

When we graph labor supply, we sketch hours as a function of wage, with z1 and u1 held fixed. 
A change in z1 shifts the labor supply function, as does a change in u1. The difference is that z1 is 
observed while u1 is not. Sometimes, z1 is called an observed supply shifter, and u1 is called an unob-
served supply shifter.

How does equation (16.1) differ from those we have studied previously? The difference is subtle. 
Although equation (16.1) is supposed to hold for all possible values of wage, we cannot generally 
view wage as varying exogenously for a cross section of counties. If we could run an experiment 
where we vary the level of agricultural and manufacturing wages across a sample of counties and 
survey workers to obtain the labor supply hs for each county, then we could estimate (16.1) by OLS. 
Unfortunately, this is not a manageable experiment. Instead, we must collect data on average wages in 
these two sectors along with how many person hours were spent in agricultural production. In decid-
ing how to analyze these data, we must understand that they are best described by the interaction of 
labor supply and demand. Under the assumption that labor markets clear, we actually observe equilib-
rium values of wages and hours worked.
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To describe how equilibrium wages and hours are determined, we need to bring in the demand 
for labor, which we suppose is given by 

	 hd 5 a2w 1 b2z2 1 u2,	 [16.2]

where hd is hours demanded. As with the supply function, we graph hours demanded as a function 
of wage, w, keeping z2 and u2 fixed. The variable z2—say, agricultural land area—is an observable 
demand shifter, while u2 is an unobservable demand shifter.

Just as with the labor supply equation, the labor demand equation is a structural equation: it can 
be obtained from the profit maximization considerations of farmers. If hd and w are in logarithmic 
form, a2 is the labor demand elasticity. Economic theory tells us that a2 , 0. Because labor and land 
are complements in production, we expect b2 . 0.

Notice how equations (16.1) and (16.2) describe entirely different relationships. Labor supply 
is a behavioral equation for workers, and labor demand is a behavioral relationship for farmers. 
Each equation has a ceteris paribus interpretation and stands on its own. They become linked in an 
econometric analysis only because observed wage and hours are determined by the intersection of 
supply and demand. In other words, for each county i, observed hours hi and observed wage wi are 
determined by the equilibrium condition 

	 his 5 hid.	 [16.3]

Because we observe only equilibrium hours for each county i, we denote observed hours by hi.
When we combine the equilibrium condition in (16.3) with the labor supply and demand 

equations, we get 

	 hi 5 a1wi 1 b1zi1 1 ui1	 [16.4]

and 

	 hi 5 a2wi 1 b2zi2 1 ui2,	 [16.5]

where we explicitly include the i subscript to emphasize that hi and wi are the equilibrium observed 
values for county i. These two equations constitute a simultaneous equations model (SEM), which 
has several important features. First, given zi1, zi2, ui1, and ui2, these two equations determine hi and 
wi. (Actually, we must assume that a1 2 a2, which means that the slopes of the supply and demand 
functions differ; see Problem 1.) For this reason, hi and wi are the endogenous variables in this 
SEM. What about zi1 and zi2? Because they are determined outside of the model, we view them as 
exogenous variables. From a statistical standpoint, the key assumption concerning zi1 and zi2 is that 
they are both uncorrelated with the supply and demand errors, ui1 and ui2, respectively. These are 
examples of structural errors because they appear in the structural equations.

A second important point is that, without including z1 and z2 in the model, there is no way to tell 
which equation is the supply function and which is the demand function. When z1 represents manu-
facturing wage, economic reasoning tells us that it is a factor in agricultural labor supply because it is 
a measure of the opportunity cost of working in agriculture; when z2 stands for agricultural land area, 
production theory implies that it appears in the labor demand function. Therefore, we know that (16.4) 
represents labor supply and (16.5) represents labor demand. If z1 and z2 are the same—for example, 
average education level of adults in the county, which can affect both supply and demand—then the 
equations look identical, and there is no hope of estimating either one. In a nutshell, this illustrates 
the identification problem in simultaneous equations models, which we will discuss more generally in 
Section 16-3.

The most convincing examples of SEMs have the same flavor as supply and demand examples. 
Each equation should have a behavioral, ceteris paribus interpretation on its own. Because we only 
observe equilibrium outcomes, specifying an SEM requires us to ask such counterfactual questions 
as: How much labor would workers provide if the wage were different from its equilibrium value? 
Example 16.1 provides another illustration of an SEM in which each equation has a ceteris paribus 
interpretation.
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Example 16.1	 Murder Rates and Size of the Police Force

Cities often want to determine how much additional law enforcement will decrease their murder rates. 
A simple cross-sectional model to address this question is 

	 murdpc 5 a1polpc 1 b10 1 b11incpc 1 u1,	 [16.6]

where murdpc is murders per capita, polpc is number of police officers per capita, and incpc is income 
per capita. (Henceforth, we do not include an i subscript.) We take income per capita as exogenous in 
this equation. In practice, we would include other factors, such as age and gender distributions, educa-
tion levels, perhaps geographic variables, and variables that measure severity of punishment. To fix 
ideas, we consider equation (16.6).

The question we hope to answer is: If a city exogenously increases its police force, will that 
increase, on average, lower the murder rate? If we could exogenously choose police force sizes for a 
random sample of cities, we could estimate (16.6) by OLS. Certainly, we cannot run such an experi-
ment. But can we think of police force size as being exogenously determined, anyway? Probably not. 
A city’s spending on law enforcement is at least partly determined by its expected murder rate. To 
reflect this, we postulate a second relationship: 

	 polpc 5 a2murdpc 1 b20 1 other factors.	 [16.7]

We expect that a2 . 0: other factors being equal, cities with higher (expected) murder rates will have 
more police officers per capita. Once we specify the other factors in (16.7), we have a two-equation 
simultaneous equations model. We are really only interested in equation (16.6), but, as we will see in  
Section 16-3, we need to know precisely how the second equation is specified in order to estimate the first.

An important point is that (16.7) describes behavior by city officials, while (16.6) describes the 
actions of potential murderers. This gives each equation a clear ceteris paribus interpretation, which 
makes equations (16.6) and (16.7) an appropriate simultaneous equations model.

We next give an example of an inappropriate use of SEMs.

Example 16.2	 Housing Expenditures and Saving

Suppose that, for a random household in the population, we assume that annual housing expenditures 
and saving are jointly determined by 

	 housing 5 a1saving 1 b10 1 b11inc 1 b12educ 1 b13age 1 u1	 [16.8]

and 

	 saving 5 a2housing 1 b20 1 b21inc 1 b22educ 1 b23age 1 u2,	 [16.9]

where inc is annual income and educ and age are measured in years. Initially, it may seem that these 
equations are a sensible way to view how housing and saving expenditures are determined. But we have 
to ask: What value would one of these equations be without the other? Neither has a ceteris paribus inter-
pretation because housing and saving are chosen by the same household. For example, it makes no sense 
to ask this question: If annual income increases by $10,000, how would housing expenditures change, 
holding saving fixed? If family income increases, a household will generally change the optimal mix of 
housing expenditures and saving. But equation (16.8) makes it seem as if we want to know the effect of 
changing inc, educ, or age while keeping saving fixed. Such a thought experiment is not interesting. Any 
model based on economic principles, particularly utility maximization, would have households opti-
mally choosing housing and saving as functions of inc and the relative prices of housing and saving. The 
variables educ and age would affect preferences for consumption, saving, and risk. Therefore, housing 
and saving would each be functions of income, education, age, and other variables that affect the utility 
maximization problem (such as different rates of return on housing and other saving).
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Even if we decided that the SEM in (16.8) and (16.9) made sense, there is no way to estimate the 
parameters. (We discuss this problem more generally in Section 16-3.) The two equations are indistin-
guishable, unless we assume that income, education, or age appears in one equation but not the other, 
which would make no sense.

Though this makes a poor SEM example, we might be interested in testing whether, other factors 
being fixed, there is a tradeoff between housing expenditures and saving. But then we would just esti-
mate, say, (16.8) by OLS, unless there is an omitted variable or measurement error problem.

Example 16.2 has the characteristics of all too many SEM applications. The problem is that the 
two endogenous variables are chosen by the same economic agent. Therefore, neither equation can 
stand on its own. Another example of an inappropriate use of an SEM would be to model weekly hours 
spent studying and weekly hours working. Each student will choose these variables simultaneously—
presumably as a function of the wage that can be earned working, ability as a student, enthusiasm for 
college, and so on. Just as in Example 16.2, it makes no sense to specify two equations where each is 
a function of the other. The important lesson is this: just because two variables are determined simul-

taneously does not mean that a simultaneous equa-
tions model is suitable. For an SEM to make sense, 
each equation in the SEM should have a ceteris pari-
bus interpretation in isolation from the other equation. 
As we discussed earlier, supply and demand examples, 
and Example 16.1, have this feature. Usually, basic 
economic reasoning, supported in some cases by sim-
ple economic models, can help us use SEMs intelli-
gently (including knowing when not to use an SEM).

16-2  Simultaneity Bias in OLS
It is useful to see, in a simple model, that an explanatory variable that is determined simultaneously 
with the dependent variable is generally correlated with the error term, which leads to bias and incon-
sistency in OLS. We consider the two-equation structural model 

	 y1 5 a1y2 1 b1z1 1 u1	 [16.10]

	 y2 5 a2 
y1 1 b2z2 1 u2	 [16.11]

and focus on estimating the first equation. The variables z1 and z2 are exogenous, so that each is 
uncorrelated with u1 and u2. For simplicity, we suppress the intercept in each equation.

To show that y2 is generally correlated with u1, we solve the two equations for y2 in terms of the 
exogenous variables and the error term. If we plug the right-hand side of (16.10) in for y1 in (16.11), 
we get 

	 y2 5 a2 1a1y2 1 b1z1 1 u1 2 1 b2z2 1 u2	

or 

	 11 2 a2a1 2y2 5 a2b1z1 1 b2z2 1 a2u1 1 u2.	 [16.12]

Now, we must make an assumption about the parameters in order to solve for y2: 

	 a2a1 2 1.	 [16.13]

Whether this assumption is restrictive depends on the application. In Example 16.1, we think that 
a1 # 0 and a2 $ 0, which implies a1a2 # 0; therefore, (16.13) is very reasonable for Example 16.1.

A standard model of advertising for monop-
olistic firms has firms choosing profit 
maximizing levels of price and advertising 
expenditures. Does this mean we should 
use an SEM to model these variables at the 
firm level?

Going Further 16.1
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Provided condition (16.13) holds, we can divide (16.12) by 11 2 a2a1 2  and write y2 as 

	 y2 5 p21z1 1 p22z2 1 v2,	 [16.14]

where p21 5 a2b1/ 11 2 a2a1 2 , p22 5 b2/ 11 2 a2a1 2 , and v2 5 1a2u1 1 u2 2 / 11 2 a2a1 2 . Equation 
(16.14), which expresses y2 in terms of the exogenous variables and the error terms, is the reduced form 
equation for y2, a concept we introduced in Chapter 15 in the context of instrumental variables estima-
tion. The parameters p21 and p22 are called reduced form parameters; notice how they are nonlinear 
functions of the structural parameters, which appear in the structural equations, (16.10) and (16.11).

The reduced form error, v2, is a linear function of the structural error terms, u1 and u2. Because 
u1 and u2 are each uncorrelated with z1 and z2, v2 is also uncorrelated with z1 and z2. Therefore, we can 
consistently estimate p21 and p22 by OLS, something that is used for two stage least squares estima-
tion (which we return to in the next section). In addition, the reduced form parameters are sometimes 
of direct interest, although we are focusing here on estimating equation (16.10).

A reduced form also exists for y1 under assumption (16.13); the algebra is similar to that used to 
obtain (16.14). It has the same properties as the reduced form equation for y2.

We can use equation (16.14) to show that, except under special assumptions, OLS estimation of 
equation (16.10) will produce biased and inconsistent estimators of a1 and b1 in equation (16.10). 
Because z1 and u1 are uncorrelated by assumption, the issue is whether y2 and u1 are uncorrelated. 
From the reduced form in (16.14), we see that y2 and u1 are correlated if and only if v2 and u1 are 
correlated (because z1 and z2 are assumed exogenous). But v2 is a linear function of u1 and u2, so it is 
generally correlated with u1. In fact, if we assume that u1 and u2 are uncorrelated, then v2 and u1 must 
be correlated whenever a2 2 0. Even if a2 equals zero—which means that y1 does not appear in equa-
tion (16.11)— v2 and u1 will be correlated if u1 and u2 are correlated.

When a2 5 0 and u1 and u2 are uncorrelated, y2 and u1 are also uncorrelated. These are fairly 
strong requirements: if a2 5 0, y2 is not simultaneously determined with y1. If we add zero correla-
tion between u1 and u2, this rules out omitted variables or measurement errors in u1 that are correlated 
with y2. We should not be surprised that OLS estimation of equation (16.10) works in this case.

When y2 is correlated with u1 because of simultaneity, we say that OLS suffers from simultaneity 
bias. Obtaining the direction of the bias in the coefficients is generally complicated, as we saw with 
omitted variables bias in Chapters 3 and 5. But in simple models, we can determine the direction of 
the bias. For example, suppose that we simplify equation (16.10) by dropping z1 from the equation, 
and we assume that u1 and u2 are uncorrelated. Then, the covariance between y2 and u1 is 

	  Cov 1y2,u1 2 5 Cov 1v2,u1 2 5 3a2/ 11 2 a2a1 2 4E 1u2
1 2 	

	  5 3a2/ 11 2 a2a1 2 4s2
1, 	

where s2
1 5 Var 1u1 2 . 0. Therefore, the asymptotic bias (or inconsistency) in the OLS estimator 

of a1 has the same sign as a2/ 11 2 a2a1 2 . If a2 . 0 and a2a1 , 1, the asymptotic bias is positive. 
(Unfortunately, just as in our calculation of omitted variables bias from Section 3-3, the conclusions 
do not carry over to more general models. But they do serve as a useful guide.) For example, in 
Example 16.1, we think a2 . 0 and a2a1 # 0, which means that the OLS estimator of a1 would have 
a positive bias. If a1 5 0, OLS would, on average, estimate a positive impact of more police on the 
murder rate; generally, the estimator of a1 is biased upward. Because we expect an increase in the 
size of the police force to reduce murder rates (ceteris paribus), the upward bias means that OLS will 
underestimate the effectiveness of a larger police force.

16-3  Identifying and Estimating a Structural Equation
As we saw in the previous section, OLS is biased and inconsistent when applied to a structural equa-
tion in a simultaneous equations system. In Chapter 15, we learned that the method of two stage least 
squares can be used to solve the problem of endogenous explanatory variables. We now show how 
2SLS can be applied to SEMs.
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The mechanics of 2SLS are similar to those in Chapter 15. The difference is that, because we 
specify a structural equation for each endogenous variable, we can immediately see whether sufficient 
IVs are available to estimate either equation. We begin by discussing the identification problem.

16-3a  Identification in a Two-Equation System
We mentioned the notion of identification in Chapter 15. When we estimate a model by OLS, the 
key identification condition is that each explanatory variable is uncorrelated with the error term. As 
we demonstrated in Section 16-2, this fundamental condition no longer holds, in general, for SEMs. 
However, if we have some instrumental variables, we can still identify (or consistently estimate) the 
parameters in an SEM equation, just as with omitted variables or measurement error.

Before we consider a general two-equation SEM, it is useful to gain intuition by considering a 
simple supply and demand example. Write the system in equilibrium form (that is, with qs 5 qd 5 q 
imposed) as 

	 q 5 a1p 1 b1z1 1 u1	 [16.15]

and 

	 q 5 a2p 1 u2.	 [16.16]

For concreteness, let q be per capita milk consumption at the county level, let p be the average price 
per gallon of milk in the county, and let z1 be the price of cattle feed, which we assume is exogenous 
to the supply and demand equations for milk. This means that (16.15) must be the supply function, as 
the price of cattle feed would shift supply 1b1 , 0 2  but not demand. The demand function contains 
no observed demand shifters.

Given a random sample on (q, p, z1), which of these equations can be estimated? That is, which 
is an identified equation? It turns out that the demand equation, (16.16), is identified, but the supply 
equation is not. This is easy to see by using our rules for IV estimation from Chapter 15: we can use 
z1 as an IV for price in equation (16.16). However, because z1 appears in equation (16.15), we have no 
IV for price in the supply equation.

price

quantity

demand
equation

supply
equations

Figure 16.1  �Shifting supply equations trace out the demand equation. Each supply  
equation is drawn for a different value of the exogenous variable, z1.
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Intuitively, the fact that the demand equation is identified follows because we have an observed 
variable, z1, that shifts the supply equation while not affecting the demand equation. Given variation 
in z1 and no errors, we can trace out the demand curve, as shown in Figure 16.1. The presence of the 
unobserved demand shifter u2 causes us to estimate the demand equation with error, but the estimators 
will be consistent, provided z1 is uncorrelated with u2.

The supply equation cannot be traced out because there are no exogenous observed factors shift-
ing the demand curve. It does not help that there are unobserved factors shifting the demand function; 
we need something observed. If, as in the labor demand function (16.2), we have an observed exog-
enous demand shifter—such as income in the milk demand function—then the supply function would 
also be identified.

To summarize: In the system of (16.15) and (16.16), it is the presence of an exogenous variable in 
the supply equation that allows us to estimate the demand equation.

Extending the identification discussion to a general two-equation model is not difficult. Write the 
two equations as 

	 y1 5 b10 1 a1y2 1 z1b1 1 u1	 [16.17]

and 

	 y2 5 b20 1 a2y1 1 z2b2 1 u2,	 [16.18]

where y1 and y2 are the endogenous variables and u1 and u2 are the structural error terms. The intercept 
in the first equation is b10, and the intercept in the second equation is b20. The variable z1 denotes a set 
of k1 exogenous variables appearing in the first equation: z1 5 1z11, z12, . . . , z1k1

2 . Similarly, z2 is the 
set of k2 exogenous variables in the second equation: z2 5 1z21, z22, . . . , z2k2

2 . In many cases, z1 and z2 
will overlap. As a shorthand form, we use the notation

	 z1b1 5 b11z11 1 b12z12 1 p 1 b1k1
z1k1

	

and 

	 z2b2 5 b21z21 1 b22z22 1 p 1 b2k2
z2k2

;	

that is, z1b1 stands for all exogenous variables in the first equation, with each multiplied by a coef-
ficient, and similarly for z2b2. (Some authors use the notation z9

1b1 and z9
2b2 instead. If you have an 

interest in the matrix algebra approach to econometrics, see Advanced Treatment E.)
The fact that z1 and z2 generally contain different exogenous variables means that we have imposed 

exclusion restrictions on the model. In other words, we assume that certain exogenous variables do 
not appear in the first equation and others are absent from the second equation. As we saw with the pre-
vious supply and demand examples, this allows us to distinguish between the two structural equations.

When can we solve equations (16.17) and (16.18) for y1 and y2 (as linear functions of all exog-
enous variables and the structural errors, u1 and u2)? The condition is the same as that in (16.13), 
namely, a2a1 2 1. The proof is virtually identical to the simple model in Section 16-2. Under this 
assumption, reduced forms exist for y1 and y2.

The key question is: Under what assumptions can we estimate the parameters in, say, (16.17)? This 
is the identification issue. The rank condition for identification of equation (16.17) is easy to state.

Rank Condition for Identification of a Structural Equation.  The first equation 
in a two-equation simultaneous equations model is identified if, and only if, the second equation contains 
at least one exogenous variable (with a nonzero coefficient) that is excluded from the first equation.

This is the necessary and sufficient condition for equation (16.17) to be identified. The order 
condition, which we discussed in Chapter 15, is necessary for the rank condition. The order condi-
tion for identifying the first equation states that at least one exogenous variable is excluded from this 
equation. The order condition is trivial to check once both equations have been specified. The rank 
condition requires more: at least one of the exogenous variables excluded from the first equation 
must have a nonzero population coefficient in the second equation. This ensures that at least one of 

58860_ch16_hr_534-558.indd   541 10/18/18   4:44 PM



PART 3  Advanced Topics542

the exogenous variables omitted from the first equation actually appears in the reduced form of y2, so  
that we can use these variables as instruments for y2. We can test this using a t or an F test, as in 
Chapter 15; some examples follow.

Identification of the second equation is, naturally, just the mirror image of the statement for  
the first equation. Also, if we write the equations as in the labor supply and demand example in 
Section 16-1—so that y1 appears on the left-hand side in both equations, with y2 on the right-hand 
side—the identification condition is identical.

Example 16.3	 Labor Supply of Married, Working Women

To illustrate the identification issue, consider labor supply for married women already in the work-
force. In place of the demand function, we write the wage offer as a function of hours and the usual 
productivity variables. With the equilibrium condition imposed, the two structural equations are 

	  hours 5 a1log 1wage 2 1 b10 1 b11educ 1 b12age 1 b13kidslt6	

	  1 b14nwifeinc 1 u1 	
[16.19]

and 

	  log 1wage 2 5 a2hours 1 b20 1 b21educ 1 b22exper	

	  1 b23exper2 1 u2. 	
[16.20]

The variable age is the woman’s age, in years, kidslt6 is the number of children less than six years old, 
nwifeinc is the woman’s nonwage income (which includes husband’s earnings), and educ and exper 
are years of education and prior experience, respectively. All variables except hours and log(wage) 
are assumed to be exogenous. (This is a tenuous assumption, as educ might be correlated with omit-
ted ability in either equation. But for illustration purposes, we ignore the omitted ability problem.) 
The functional form in this system—where hours appears in level form but wage is in logarithmic 
form—is popular in labor economics. We can write this system as in equations (16.17) and (16.18) by 
defining y1 5 hours and y2 5 log 1wage 2 .

The first equation is the supply function. It satisfies the order condition because two exogenous 
variables, exper and exper2, are omitted from the labor supply equation. These exclusion restrictions 
are crucial assumptions: we are assuming that, once wage, education, age, number of small children, 
and other income are controlled for, past experience has no effect on current labor supply. One could 
certainly question this assumption, but we use it for illustration.

Given equations (16.19) and (16.20), the rank condition for identifying the first equation is that 
at least one of exper and exper2 has a nonzero coefficient in equation (16.20). If b22 5 0 and b23 5 0, 
there are no exogenous variables appearing in the second equation that do not also appear in the first 
(educ appears in both). We can state the rank condition for identification of (16.19) equivalently in 
terms of the reduced form for log(wage), which is 

	  log 1wage 2 5 p20 1 p21educ 1 p22age 1 p23kidslt6 	
[16.21]

	  1 p24nwifeinc 1 p25exper 1 p26exper2 1 v2.	

For identification, we need p25 2 0 or p26 2 0, something we can test using a standard F statistic, as 
we discussed in Chapter 15.

The wage offer equation, (16.20), is identified if at least one of age, kidslt6, or nwifeinc has a non-
zero coefficient in (16.19). This is identical to assuming that the reduced form for hours—which has 
the same form as the right-hand side of (16.21)—depends on at least one of age, kidslt6, or nwifeinc. 
In specifying the wage offer equation, we are assuming that age, kidslt6, and nwifeinc have no effect 
on the offered wage, once hours, education, and experience are accounted for. These would be poor 
assumptions if these variables somehow have direct effects on productivity, or if women are discrimi-
nated against based on their age or number of small children.
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In Example 16.3, we take the population of interest to be married women who are in the workforce 
(so that equilibrium hours are positive). This excludes the group of married women who choose not to 
work outside the home. Including such women in the model raises some difficult problems. For instance, 
if a woman does not work, we cannot observe her wage offer. We touch on these issues in Chapter 17; but 
for now, we must think of equations (16.19) and (16.20) as holding only for women who have hours . 0.

Example 16.4	 Inflation and Openness

Romer (1993) proposes theoretical models of inflation that imply that more “open” countries should 
have lower inflation rates. His empirical analysis explains average annual inflation rates (since 1973) 
in terms of the average share of imports in gross domestic (or national) product since 1973—which 
is his measure of openness. In addition to estimating the key equation by OLS, he uses instrumental 
variables. While Romer does not specify both equations in a simultaneous system, he has in mind a 
two-equation system: 

	 inf 5 b10 1 a1open 1 b11log 1pcinc 2 1 u1	 [16.22]

	 open 5 b20 1 a2inf 1 b21log 1pcinc 2 1 b22log 1 land 2 1 u2,	 [16.23]

where pcinc is 1980 per capita income, in U.S. dollars (assumed to be exogenous), and land is the 
land area of the country, in square miles (also assumed to be exogenous). Equation (16.22) is the 
one of interest, with the hypothesis that a1 , 0. (More open economies have lower inflation rates.) 
The second equation reflects the fact that the degree of openness might depend on the average infla-
tion rate, as well as other factors. The variable log(pcinc) appears in both equations, but log(land) is 

assumed to appear only in the second equation. The 
idea is that, ceteris paribus, a smaller country is likely 
to be more open (so b22 , 0).

Using the identification rule that was stated ear-
lier, equation (16.22) is identified, provided b22 2 0.  
Equation (16.23) is not identified because it con-
tains both exogenous variables. But we are interested  
in (16.22).

16-3b  Estimation by 2SLS
Once we have determined that an equation is identified, we can estimate it by two stage least squares. 
The instrumental variables consist of the exogenous variables appearing in either equation.

Example 16.5	 Labor Supply of Married, Working Women

We use the data on working, married women in MROZ to estimate the labor supply equation (16.19) 
by 2SLS. The full set of instruments includes educ, age, kidslt6, nwifeinc, exper, and exper2. The 
estimated labor supply curve is 

	  hours 5 2,225.66 1 1,639.56 log 1wage 2 2 183.75 educ	

	   1574.56 2    1470.58 2            159.10 2 	

	  2 7.81 age 2 198.15 kidslt6 2 10.17 nwifeinc 	 [16.24]

	    19.38 2     1182.93 2          16.61 2 	

	  n 5 428, 	

If we have money supply growth since 
1973 for each country, which we assume is 
exogenous, does this help identify equation 
(16.23)?

Going Further 16.2
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where the reported standard errors are computed using a degrees-of-freedom adjustment. This equa-
tion shows that the labor supply curve slopes upward. The estimated coefficient on log(wage) has 
the following interpretation: holding other factors fixed, Dhours < 16.4 1%Dwage 2 . We can calculate 
labor supply elasticities by multiplying both sides of this last equation by 100/hours: 

	 100 
#
 1Dhours/hours 2 < 11,640/hours 2 1%Dwage 2 	

or 

	 %Dhours < 11,640/hours 2 1%Dwage 2 ,	
which implies that the labor supply elasticity (with respect to wage) is simply 1,640/hours. [The 
elasticity is not constant in this model because hours, not log(hours), is the dependent variable in 
(16.24).] At the average hours worked, 1,303, the estimated elasticity is 1,640/1,303 < 1.26, which 
implies a greater than 1% increase in hours worked given a 1% increase in wage. This is a large esti-
mated elasticity. At higher hours, the elasticity will be smaller; at lower hours, such as hours 5 800, 
the elasticity is over two.

For comparison, when (16.19) is estimated by OLS, the coefficient on log(wage) is 22.05 
1se 5 54.88 2 , which implies no wage effect on hours worked. To confirm that log(wage) is in fact 
endogenous in (16.19), we can carry out the test from Section 15-5. When we add the reduced 
form residuals v̂2 to the equation and estimate by OLS, the t statistic on v̂2 is 26.61, which is very 
significant, and so log(wage) appears to be endogenous.

The wage offer equation (16.20) can also be estimated by 2SLS. The result is 

	  log 1wage 2 5 2.656 1 .00013 hours 1 .110 educ	

	   1 .338 2 1 .00025 2      1 .016 2 	

	  1 .035 exper 2 .00071 exper2 	 [16.25]

	    1 .019 2      1 .00045 2 	

	 n 5 428.	

This differs from previous wage equations in that hours is included as an explanatory variable and 
2SLS is used to account for endogeneity of hours (and we assume that educ and exper are exog-
enous). The coefficient on hours is statistically insignificant, which means that there is no evidence 
that the wage offer increases with hours worked. The other coefficients are similar to what we get by 
dropping hours and estimating the equation by OLS.

Estimating the effect of openness on inflation by instrumental variables is also straightforward.

Example 16.6	 Inflation and Openness

Before we estimate (16.22) using the data in OPENNESS, we check to see whether open has suffi-
cient partial correlation with the proposed IV, log(land). The reduced form regression is 

	  open 5 117.08 1 .546 log 1pcinc 2 2 7.57 log 1 land 2 	
	    115.85 2  11.493 2           1 .81 2 	

	  n 5 114, R2 5 .449. 	

The t statistic on log(land) is over nine in absolute value, which verifies Romer’s assertion that  
smaller countries are more open. The fact that log(pcinc) is so insignificant in this regression is 
irrelevant.
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Estimating (16.22) using log(land) as an IV for open gives 

	  inf 5 26.90 2 .337 open 1 .376 log 1pcinc 2 	
	   115.40 2 1 .144 2     12.015 2 	 [16.26]

	  n 5 114. 	

The coefficient on open is statistically significant at 
about the 1% level against a one-sided alternative 
1a1 , 0 2 . The effect is economically important as 
well: for every percentage point increase in the import 
share of GDP, annual inflation is about one-third of 
a percentage point lower. For comparison, the OLS 
estimate is 2.215 1se 5 .095 2 .

16-4 Systems with More Than Two Equations
Simultaneous equations models can consist of more than two equations. Studying general identifica-
tion of these models is difficult and requires matrix algebra. Once an equation in a general system has 
been shown to be identified, it can be estimated by 2SLS.

16-4a  Identification in Systems with Three or More Equations
We will use a three-equation system to illustrate the issues that arise in the identification of compli-
cated SEMs. With intercepts suppressed, write the model as 

	 y1 5 a12y2 1 a13y3 1 b11z1 1 u1	 [16.27]

	 y2 5 a21y1 1 b21z1 1 b22z2 1 b23z3 1 u2	 [16.28]

	 y3 5 a32y2 1 b31z1 1 b32z2 1 b33z3 1 b34z4 1 u3,	 [16.29]

where the yg are the endogenous variables and the zj are exogenous. The first subscript on the parame-
ters indicates the equation number, and the second indicates the variable number; we use a for param-
eters on endogenous variables and b for parameters on exogenous variables.

Which of these equations can be estimated? It is generally difficult to show that an equation in 
an SEM with more than two equations is identified, but it is easy to see when certain equations are 
not identified. In system (16.27) through (16.29), we can easily see that (16.29) falls into this cat-
egory. Because every exogenous variable appears in this equation, we have no IVs for y2. Therefore,  
we cannot consistently estimate the parameters of this equation. For the reasons we discussed in 
Section 16-2, OLS estimation will not usually be consistent.

What about equation (16.27)? Things look promising because z2, z3, and z4 are all excluded from 
the equation—this is another example of exclusion restrictions. Although there are two endogenous 
variables in this equation, we have three potential IVs for y2 and y3. Therefore, equation (16.27) passes 
the order condition. For completeness, we state the order condition for general SEMs.

Order Condition for Identification.  An equation in any SEM satisfies the order condition 
for identification if the number of excluded exogenous variables from the equation is at least as large 
as the number of right-hand side endogenous variables.

The second equation, (16.28), also passes the order condition because there is one excluded 
exogenous variable, z4, and one right-hand side endogenous variable, y1.

How would you test whether the difference 
between the OLS and IV estimates on open 
are statistically different?

Going Further 16.3
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As we discussed in Chapter 15 and in the previous section, the order condition is only necessary, 
not sufficient, for identification. For example, if b34 5 0, z4 appears nowhere in the system, which 
means it is not correlated with y1, y2, or y3. If b34 5 0, then the second equation is not identified, 
because z4 is useless as an IV for y1. This again illustrates that identification of an equation depends 
on the values of the parameters (which we can never know for sure) in the other equations.

There are many subtle ways that identification can fail in complicated SEMs. To obtain sufficient 
conditions, we need to extend the rank condition for identification in two-equation systems. This is 
possible, but it requires matrix algebra [see, for example, Wooldridge (2010, Chapter 9)]. In many 
applications, one assumes that, unless there is obviously failure of identification, an equation that 
satisfies the order condition is identified.

The nomenclature on overidentified and just identified equations from Chapter 15 originated 
with SEMs. In terms of the order condition, (16.27) is an overidentified equation because we need 
only two IVs (for y2 and y3) but we have three available (z2, z3, and z4); there is one overidentify-
ing restriction in this equation. In general, the number of overidentifying restrictions equals the total 
number of exogenous variables in the system minus the total number of explanatory variables in the 
equation. These can be tested using the overidentification test from Section 15-5. Equation (16.28) is 
a just identified equation, and the third equation is an unidentified equation.

16-4b  Estimation
Regardless of the number of equations in an SEM, each identified equation can be estimated by 2SLS. 
The instruments for a particular equation consist of the exogenous variables appearing anywhere in 
the system. Tests for endogeneity, heteroskedasticity, serial correlation, and overidentifying restric-
tions can be obtained, just as in Chapter 15.

It turns out that, when any system with two or more equations is correctly specified and certain 
additional assumptions hold, system estimation methods are generally more efficient than estimat-
ing each equation by 2SLS. The most common system estimation method in the context of SEMs 
is three stage least squares. These methods, with or without endogenous explanatory variables, are 
beyond the scope of this text. [See, for example, Wooldridge (2010, Chapters 7 and 8).]

16-5  Simultaneous Equations Models with Time Series
Among the earliest applications of SEMs was estimation of large systems of simultaneous equations 
that were used to describe a country’s economy. A simple Keynesian model of aggregate demand (that 
ignores exports and imports) is 

	 Ct 5 b0 1 b1 1Yt 2 Tt 2 1 b2rt 1 ut1	 [16.30]

	 It 5 g0 1 g1rt 1 ut2	 [16.31]

	 Yt ; Ct 1 It 1 Gt,	 [16.32]

where 

	  Ct 5 consumption, 	

	  Yt 5 income, 	

	  Tt 5 tax receipts, 	

	  rt 5 the interest rate, 	

	  It 5 investment, and 	

	  Gt 5 government spending.	

[See, for example, Mankiw (1994, Chapter 9).] For concreteness, assume t represents year.
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The first equation is an aggregate consumption function, where consumption depends on dispos-
able income, the interest rate, and the unobserved structural error ut1. The second equation is a very 
simple investment function. Equation (16.32) is an identity that is a result of national income account-
ing: it holds by definition, without error. Thus, there is no sense in which we estimate (16.32), but we 
need this equation to round out the model.

Because there are three equations in the system, there must also be three endogenous variables. 
Given the first two equations, it is clear that we intend for Ct and It to be endogenous. In addition, 
because of the accounting identity, Yt is endogenous. We would assume, at least in this model, that Tt, 
rt, and Gt are exogenous, so that they are uncorrelated with ut1 and ut2. (We will discuss problems with 
this kind of assumption later.)

If rt is exogenous, then OLS estimation of equation (16.31) is natural. The consumption function, 
however, depends on disposable income, which is endogenous because Yt is. We have two instruments 
available under the maintained exogeneity assumptions: Tt and Gt. Therefore, if we follow our prescription 
for estimating cross-sectional equations, we would estimate (16.30) by 2SLS using instruments 1Tt, Gt, rt 2 .

Models such as (16.30) through (16.32) are seldom estimated now, for several good reasons. 
First, it is very difficult to justify, at an aggregate level, the assumption that taxes, interest rates, and 
government spending are exogenous. Taxes clearly depend directly on income; for example, with a 
single marginal income tax rate tt in year t, Tt 5 ttYt. We can easily allow this by replacing 1Yt 2 Tt 2  
with 11 2 tt 2Yt in (16.30), and we can still estimate the equation by 2SLS if we assume that govern-
ment spending is exogenous. We could also add the tax rate to the instrument list, if it is exogenous. 
But are government spending and tax rates really exogenous? They certainly could be in principle, 
if the government sets spending and tax rates independently of what is happening in the economy. 
But it is a difficult case to make in reality: government spending generally depends on the level of 
income, and at high levels of income, the same tax receipts are collected for lower marginal tax rates. 
In addition, assuming that interest rates are exogenous is extremely questionable. We could specify a 
more realistic model that includes money demand and supply, and then interest rates could be jointly 
determined with Ct, It, and Yt . But then finding enough exogenous variables to identify the equations 
becomes quite difficult (and the following problems with these models still pertain).

Some have argued that certain components of government spending, such as defense spending—
see, for example, Hall (1988) and Ramey (1991)—are exogenous in a variety of simultaneous equa-
tions applications. But this is not universally agreed upon, and, in any case, defense spending is not 
always appropriately correlated with the endogenous explanatory variables [see Shea (1993) for dis-
cussion and Computer Exercises C6 for an example].

A second problem with a model such as (16.30) through (16.32) is that it is completely static. 
Especially with monthly or quarterly data, but even with annual data, we often expect adjustment 
lags. (One argument in favor of static Keynesian-type models is that they are intended to describe the 
long run without worrying about short-run dynamics.) Allowing dynamics is not very difficult. For 
example, we could add lagged income to equation (16.31): 

	 It 5 g0 1 g1rt 1 g2Yt21 1 ut2.	 [16.33]

In other words, we add a lagged endogenous variable (but not It21) to the investment equation. Can 
we treat Yt21 as exogenous in this equation? Under certain assumptions on ut2, the answer is yes. But 
we typically call a lagged endogenous variable in an SEM a predetermined variable. Lags of exog-
enous variables are also predetermined. If we assume that ut2 is uncorrelated with current exogenous 
variables (which is standard) and all past endogenous and exogenous variables, then Yt21 is uncor-
related with ut2. Given exogeneity of rt, we can estimate (16.33) by OLS.

If we add lagged consumption to (16.30), we can treat Ct21 as exogenous in this equation under 
the same assumptions on ut1 that we made for ut2 in the previous paragraph. Current disposable 
income is still endogenous in 

	 Ct 5 b0 1 b1 1Yt 2 Tt 2 1 b2rt 1 b3Ct21 1 ut1,	 [16.34]
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so we could estimate this equation by 2SLS using instruments 1Tt, Gt, rt, Ct2 l 2 ; if investment is 
determined by (16.33), Yt21 should be added to the instrument list. [To see why, use (16.32), (16.33), 
and (16.34) to find the reduced form for Yt in terms of the exogenous and predetermined variables: Tt, 
rt, Gt, Ct21, and Yt21. Because Yt21 shows up in this reduced form, it should be used as an IV.]

The presence of dynamics in aggregate SEMs is, at least for the purposes of forecasting, a clear 
improvement over static SEMs. But there are still some important problems with estimating SEMs using 
aggregate time series data, some of which we discussed in Chapters 11 and 15. Recall that the validity 
of the usual OLS or 2SLS inference procedures in time series applications hinges on the notion of weak 
dependence. Unfortunately, series such as aggregate consumption, income, investment, and even interest 
rates seem to violate the weak dependence requirements. (In the terminology of Chapter 11, they have 
unit roots.) These series also tend to have exponential trends, although this can be partly overcome by 
using the logarithmic transformation and assuming different functional forms. Generally, even the large 
sample, let alone the small sample, properties of OLS and 2SLS are complicated and dependent on vari-
ous assumptions when they are applied to equations with I(1) variables. We will briefly touch on these 
issues in Chapter 18. An advanced, general treatment is given by Hamilton (1994).

Does the previous discussion mean that SEMs are not usefully applied to time series data? Not 
at all. The problems with trends and high persistence can be avoided by specifying systems in first 
differences or growth rates. But one should recognize that this is a different SEM than one specified 
in levels. [For example, if we specify consumption growth as a function of disposable income growth 
and interest rate changes, this is different from (16.30).] Also, as we discussed earlier, incorporat-
ing dynamics is not especially difficult. Finally, the problem of finding truly exogenous variables to 
include in SEMs is often easier with disaggregated data. For example, for manufacturing industries, 
Shea (1993) describes how output (or, more precisely, growth in output) in other industries can be 
used as an instrument in estimating supply functions. Ramey (1991) also has a convincing analysis of 
estimating industry cost functions by instrumental variables using time series data.

The next example shows how aggregate data can be used to test an important economic theory, the 
permanent income theory of consumption, usually called the permanent income hypothesis (PIH). The 
approach used in this example is not, strictly speaking, based on a simultaneous equations model, but 
we can think of consumption and income growth (as well as interest rates) as being jointly determined.

Example 16.7	 Testing the Permanent Income Hypothesis

Campbell and Mankiw (1990) used instrumental variables methods to test various versions of the 
PIH. We will use the annual data from 1959 through 1995 in CONSUMP to mimic one of their analy-
ses. Campbell and Mankiw used quarterly data running through 1985.

One equation estimated by Campbell and Mankiw (using our notation) is 

	 gct 5 b0 1 b1gyt 1 b2r3t 1 ut,	 [16.35]

where 

	  gct 5 Dlog 1ct 2 5 annual growth in real per capita consumption 1excluding durables 2 , 	

	  gyt 5 growth in real disposable income, and 	

	  r3t 5 the 1ex post 2  real interest rate as measured by the return on three-month T-bill 	
	    rates: r3t 5 i3t 2 inft, where the inflation rate is based on the Consumer Price Index.	

The growth rates of consumption and disposable income are not trending, and they are weakly 
dependent; we will assume this is the case for r3t as well, so that we can apply standard asymptotic 
theory.

The key feature of equation (16.35) is that the PIH implies that the error term ut has a zero mean 
conditional on all information observed at time t 2 1 or earlier: E 1ut 0It21 2 5 0. However, ut is not 
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necessarily uncorrelated with gyt or r3t; a traditional way to think about this is that these variables are 
jointly determined, but we are not writing down a full three-equation system.

Because ut is uncorrelated with all variables dated t 2 1 or earlier, valid instruments for estimat-
ing (16.35) are lagged values of gc, gy, and r3 (and lags of other observable variables, but we will 
not use those here). What are the hypotheses of interest? The pure form of the PIH has b1 5 b2 5 0.  
Campbell and Mankiw argue that b1 is positive if some fraction of the population consumes current 
income, rather than permanent income. The PIH with a nonconstant real interest rate implies that 
b2 . 0.

When we estimate (16.35) by 2SLS, using instruments gc21, gy21, and r321 for the endogenous 
variables gyt and r3t, we obtain 

	  gct 5 .0081 1 .586 gyt 2 .00027r3t	

	   1 .0032 2 1 .135 2    1 .00076 2 	 [16.36]

	  n 5 35, R2 5 .678. 	

Therefore, the pure form of the PIH is strongly rejected because the coefficient on gy is economically 
large (a 1% increase in disposable income increases consumption by over .5%) and statistically 
significant 1 t 5 4.34 2 . By contrast, the real interest rate coefficient is very small and statistically 
insignificant. These findings are qualitatively the same as Campbell and Mankiw’s.

The PIH also implies that the errors 5ut6 are serially uncorrelated. After 2SLS estimation, we 
obtain the residuals, ût, and include ût21 as an additional explanatory variable in (16.36); we still use 
instruments gct21, gyt21, r3t21, and ût21 acts as its own instrument (see Section 15-7). The coefficient 
on ût21 is r̂ 5 .187 1se 5 .133 2 , so there is some evidence of positive serial correlation, although not 
at the 5% significance level. Campbell and Mankiw discuss why, with the available quarterly data, 
positive serial correlation might be found in the errors even if the PIH holds; some of those concerns 
carry over to annual data.

Using growth rates of trending or I(1) variables 
in SEMs is fairly common in time series applications. 
For example, Shea (1993) estimates industry supply 
curves specified in terms of growth rates.

If a structural model contains a time trend—
which may capture exogenous, trending factors that 
are not directly modeled—then the trend acts as its 
own IV.

16-6 Simultaneous Equations Models with Panel Data
Simultaneous equations models also arise in panel data contexts. For example, we can imagine esti-
mating labor supply and wage offer equations, as in Example 16.3, for a group of people working 
over a given period of time. In addition to allowing for simultaneous determination of variables within 
each time period, we can allow for unobserved effects in each equation. In a labor supply function, it 
would be useful to allow an unobserved taste for leisure that does not change over time.

Suppose that for a particular city you have 
monthly data on per capita consumption 
of fish, per capita income, the price of fish, 
and the prices of chicken and beef; income 
and chicken and beef prices are exogenous. 
Assume that there is no seasonality in the 
demand function for fish, but there is in the 
supply of fish. How can you use this infor-
mation to estimate a constant elasticity 
demand-for-fish equation? Specify an equa-
tion and discuss identification. (Hint: You 
should have 11 instrumental variables for 
the price of fish.)

Going Further 16.4
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The basic approach to estimating SEMs with panel data involves two steps: (1) eliminate the 
unobserved effects from the equations of interest using the fixed effects transformation or first differ-
encing and (2) find instrumental variables for the endogenous variables in the transformed equation. 
This can be very challenging because, for a convincing analysis, we need to find instruments that 
change over time. To see why, write an SEM for panel data as

	 yit1 5 a1yit2 1 zit1b1 1 ai1 1 uit1	 [16.37]

	 yit2 5 a2yit1 1 zit2b2 1 ai2 1 uit2,	 [16.38]

where i denotes cross section, t denotes time period, and zit1b1 or zit2b2 denotes linear functions of a 
set of exogenous explanatory variables in each equation. The most general analysis allows the unob-
served effects, ai1 and ai2, to be correlated with all explanatory variables, even the elements in z. 
However, we assume that the idiosyncratic structural errors, uit1 and uit2, are uncorrelated with the z 
in both equations and across all time periods; this is the sense in which the z are exogenous. Except 
under special circumstances, yit2 is correlated with uit1 and yit1 is correlated with uit2.

Suppose we are interested in equation (16.37). We cannot estimate it by OLS, as the composite 
error ai1 1 uit1 is potentially correlated with all explanatory variables. Suppose we difference over 
time to remove the unobserved effect, ai1:

	 Dyit1 5 a1Dyit2 1 Dzit1b1 1 Duit1.	 [16.39]

(As usual with differencing or time-demeaning, we can only estimate the effects of variables that 
change over time for at least some cross-sectional units.) Now, the error term in this equation is 
uncorrelated with Dzit1 by assumption. But Dyit2 and Duit1 are possibly correlated. Therefore, we need 
an IV for Dyit2.

As with the case of pure cross-sectional or pure time series data, possible IVs come from the 
other equation: elements in zit2 that are not also in zit1. In practice, we need time-varying elements in 
zit2 that are not also in zit1. This is because we need an instrument for Dyit2, and a change in a variable 
from one period to the next is unlikely to be highly correlated with the level of exogenous variables. 
In fact, if we difference (16.38), we see that the natural IVs for Dyit2 are those elements in Dzit2 that 
are not also in Dzit1.

As an example of the problems that can arise, consider a panel data version of the labor supply 
function in Example 16.3. After differencing, suppose we have the equation

	 Dhoursit 5 b0 1 a1Dlog 1wageit 2 1 D 1other factorsit 2 ,	
and we wish to use Dexperit as an instrument for Dlog 1wageit 2 . The problem is that, because we are 
looking at people who work in every time period, Dexperit 5 1 for all i and t. (Each person gets another 
year of experience after a year passes.) We cannot use an IV that is the same value for all i and t,  
and so we must look elsewhere. One possibility as an instrument for Dlog(wageit) is the change in the 
minimum wage at the state or local level. (As of January 2018, more than 40 localities in the United 
States have minimum wages above the state minimum wage.) Naturally, in the labor supply function, 
and, therefore, in the reduced form for Dlog(wageit), one should include a full set of dummy variables 
for the different time periods in order to render changes in the minimum wage exogenous to the indi-
vidual labor supply equation.

Often, participation in an experimental program can be used to obtain IVs in panel data contexts. 
In Example 15.10, we used receipt of job training grants as an IV for the change in hours of training 
in determining the effects of job training on worker productivity. In fact, we could view that in an 
SEM context: job training and worker productivity are jointly determined, but receiving a job training 
grant is exogenous in equation (15.57).

One can sometimes come up with clever, convincing instrumental variables in panel data applica-
tions, as the following example illustrates.
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Example 16.8	 Effect of Prison Population on Violent Crime Rates

In order to estimate the causal effect of prison population increases on crime rates at the state level, 
Levitt (1996) used instances of prison overcrowding litigation as instruments for the growth in prison 
population. The equation Levitt estimated is in first differences; we can write an underlying fixed 
effects model as 

	 log 1crimeit 2 5 ut 1 allog 1prisonit 2 1 zit1b1 1 ai1 1 uit1,	 [16.40]

where ut denotes different time intercepts, and crime and prison are measured per 100,000 people. 
(The prison population variable is measured on the last day of the previous year.) The vector zit1 con-
tains log of police per capita, log of income per capita, the unemployment rate, proportions of black 
and those living in metropolitan areas, and age distribution proportions.

Differencing (16.40) gives the equation estimated by Levitt: 

	 Dlog 1crimeit 2 5 jt 1 a1Dlog 1prisonit 2 1 Dzit1b1 1 Duit1.	 [16.41]

Simultaneity between crime rates and prison population, or more precisely in the growth rates, makes 
OLS estimation of (16.41) generally inconsistent. Using the violent crime rate and a subset of the 
data from Levitt (in PRISON, for the years 1980 through 1993, for 51 

#
 14 5 714 total observations), 

we obtain the pooled OLS estimate of a1, which is 2.181 1se 5 .048 2 . We also estimate (16.41) by 
pooled 2SLS, where the instruments for Dlog(prison) are two binary variables, one each for whether a 
final decision was reached on overcrowding litigation in the current year or in the previous two years. 
The pooled 2SLS estimate of a1 is 21.032 1se 5 .370 2 . Therefore, the 2SLS estimated effect is much 
larger; not surprisingly, it is much less precise, too. Levitt found similar results when using a longer 
time period (but with early observations missing for some states) and more instruments.

Testing for AR(1) serial correlation in rit1 5 Duit1 is easy. After the pooled 2SLS estimation, 
obtain the residuals, r̂it1. Then, include one lag of these residuals in the original equation, and esti-
mate the equation by 2SLS, where r̂it1 acts as its own instrument. The first year is lost because of the 
lagging. Then, the usual 2SLS t statistic on the lagged residual is a valid test for serial correlation. In 
Example 16.8, the coefficient on r̂it1 is only about .076 with t 5 1.67. With such a small coefficient 
and modest t statistic, we can safely assume serial independence.

An alternative approach to estimating SEMs with panel data is to use the fixed effects transfor-
mation and then to apply an IV technique such as pooled 2SLS. A simple procedure is to estimate the 
time-demeaned equation by pooled 2SLS, which would look like

	 y$it1 5 a1y
$

t2 1 z$it1b1 1 u$it1,   t 5 1, 2, . . . , T,	 [16.42]

where z$it1 and z$it2 are IVs. This is equivalent to using 2SLS in the dummy variable formulation, where 
the unit-specific dummy variables act as their own instruments. Ayres and Levitt (1998) applied 2SLS 
to a time-demeaned equation to estimate the effect of LoJack electronic theft prevention devices on car 
theft rates in cities. If (16.42) is estimated directly, then the df needs to be corrected to N 1T 2 1 2 2 k1,  
where k1 is the total number of elements in a1 and b1. Including unit-specific dummy variables and 
applying pooled 2SLS to the original data produces the correct df. A detailed treatment of 2SLS with 
panel data is given in Wooldridge (2010, Chapter 11).

Summary
Simultaneous equations models are appropriate when firmly grounded in counterfactual reasoning. In par-
ticular, each equation in the system should have a ceteris paribus interpretation. Good examples are when 
separate equations describe different sides of a market or the behavioral relationships of different economic 
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agents. Supply and demand examples are leading cases, but there are many other applications of SEMs in 
economics and the social sciences.

An important feature of SEMs is that, by fully specifying the system, it is clear which variables are 
assumed to be exogenous and which ones appear in each equation. Given a full system, we are able to 
determine which equations can be identified (that is, can be estimated). In the important case of a two-
equation system, identification of (say) the first equation is easy to state: at least one exogenous variable 
must be excluded from the first equation that appears with a nonzero coefficient in the second equation.

As we know from previous chapters, OLS estimation of an equation that contains an endogenous 
explanatory variable generally produces biased and inconsistent estimators. Instead, 2SLS can be used to 
estimate any identified equation in a system. More advanced system methods are available, but they are 
beyond the scope of our treatment.

The distinction between omitted variables and simultaneity in applications is not always sharp. Both prob-
lems, not to mention measurement error, can appear in the same equation. A good example is the labor supply 
of married women. Years of education (educ) appears in both the labor supply and the wage offer functions [see 
equations (16.19) and (16.20)]. If omitted ability is in the error term of the labor supply function, then wage and 
education are both endogenous. The important thing is that an equation estimated by 2SLS can stand on its own.

SEMs can be applied to time series data as well. As with OLS estimation, we must be aware of trend-
ing, integrated processes in applying 2SLS. Problems such as serial correlation can be handled as in Section 
15-7. We also gave an example of how to estimate an SEM using panel data, where the equation is first dif-
ferenced to remove the unobserved effect. Then, we can estimate the differenced equation by pooled 2SLS, 
just as in Chapter 15. Alternatively, in some cases, we can use time-demeaning of all variables, including 
the IVs, and then apply pooled 2SLS; this is identical to putting in dummies for each cross-sectional obser-
vation and using 2SLS, where the dummies act as their own instruments. SEM applications with panel data 
are very powerful, as they allow us to control for unobserved heterogeneity while dealing with simultane-
ity. They are becoming more and more common and are not especially difficult to estimate.

Key Terms
Endogenous Variables
Exclusion Restrictions
Exogenous Variables
Identified Equation
Just Identified Equation
Lagged Endogenous Variable
Order Condition

Overidentified Equation
Predetermined Variable
Rank Condition
Reduced Form Equation
Reduced Form Error
Reduced Form Parameters
Simultaneity

Simultaneity Bias
Simultaneous Equations  

Model (SEM)
Structural Equation
Structural Errors
Structural Parameters
Unidentified Equation

Problems
1	 Write a two-equation system in “supply and demand form,” that is, with the same variable yt (typically, 

“quantity”) appearing on the left-hand side: 

	  y1 5 a1y2 1 b1z1 1 u1

	  y1 5 a2y2 1 b2z2 1 u2.	

(i)	 If a1 5 0 or a2 5 0, explain why a reduced form exists for y1. (Remember, a reduced form 
expresses y1 as a linear function of the exogenous variables and the structural errors.) If a1 2 0 
and a2 5 0, find the reduced form for y2.

(ii)	 If a1 2 0, a2 2 0, and a1 2 a2, find the reduced form for y1. Does y2 have a reduced form in 
this case?

(iii)	 Is the condition a1 2 a2 likely to be met in supply and demand examples? Explain.
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2	 Let corn denote per capita consumption of corn in bushels at the county level, let price be the price per 
bushel of corn, let income denote per capita county income, and let rainfall be inches of rainfall during 
the last corn-growing season. The following simultaneous equations model imposes the equilibrium 
condition that supply equals demand: 

	  corn 5 a1price 1 b1income 1 u1 	

	  corn 5 a2  
price 1 b2rainfall 1 g2rainfall2 1 u2.	

Which is the supply equation, and which is the demand equation? Explain.

3	 In Problem 3 of Chapter 3, we estimated an equation to test for a tradeoff between minutes per week 
spent sleeping (sleep) and minutes per week spent working (totwrk) for a random sample of individu-
als. We also included education and age in the equation. Because sleep and totwrk are jointly chosen 
by each individual, is the estimated tradeoff between sleeping and working subject to a “simultaneity 
bias” criticism? Explain.

4	 Suppose that annual earnings and alcohol consumption are determined by the SEM 

	  log 1earnings 2 5 b0 1 b1alcohol 1 b2educ 1 u1 	

	  alcohol 5 g0 1 g1log 1earnings 2 1 g2educ 1 g3log 1price 2 1 u2,	

where price is a local price index for alcohol, which includes state and local taxes. Assume that educ 
and price are exogenous. If b1, b2, g1, g2, and g3 are all different from zero, which equation is identi-
fied? How would you estimate that equation?

5	 A simple model to determine the effectiveness of condom usage on reducing sexually transmitted dis-
eases among sexually active high school students is 

	 infrate 5 b0 1 b1conuse 1 b2percmale 1 b3avginc 1 b4city 1 u1,

where

	  infrate 5 the percentage of sexually active students who have contracted venereal disease.	

	  conuse 5 the percentage of boys who claim to use condoms regularly. 	

	  avginc 5 average family income. 	

	  city 5 a dummy variable indicating whether a school is in a city. 	

The model is at the school level.
(i)	 Interpreting the preceding equation in a causal, ceteris paribus fashion, what should be the  

sign of b1?
(ii)	 Why might infrate and conuse be jointly determined?
(iii)	 If condom usage increases with the rate of venereal disease, so that g1 . 0 in the equation 

	 conuse 5 g0 1 g1infrate 1 other factors,

what is the likely bias in estimating b1 by OLS?
(iv)	 Let condis be a binary variable equal to unity if a school has a program to distribute condoms. 

Explain how this can be used to estimate b1 (and the other betas) by IV. What do we have to 
assume about condis in each equation?

6	 Consider a linear probability model for whether employers offer a pension plan based on the percentage 
of workers belonging to a union, as well as other factors: 

	  pension 5 b0 1 b1percunion 1 b2avgage 1 b3avgeduc

	  1 b4 
percmale 1 b5 

percmarr 1 u1. 	

(i)	 Why might percunion be jointly determined with pension?
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(ii)	 Suppose that you can survey workers at firms and collect information on workers’ families. Can 
you think of information that can be used to construct an IV for percunion?

(iii)	 How would you test whether your variable is at least a reasonable IV candidate for percunion?

7	 For a large university, you are asked to estimate the demand for tickets to women’s basketball games. 
You can collect time series data over 10 seasons, for a total of about 150 observations. One possible 
model is 

	  lATTENDt 5 b0 1 b1lPRICEt 1 b2WINPERCt 1 b3RIVALt	

	  1 b4WEEKENDt 1 b5t 1 ut, 	

where

	  PRICEt 5 the price of admission, probably measured in real terms—say, 	
	  deflating by a regional consumer price index. 	

	  WINPERCt 5 the team’s current winning percentage. 	

	  RIVALt 5 a dummy variable indicating a game against a rival. 	

	  WEEKENDt 5 a dummy variable indicating whether the game is on a weekend.	

The l denotes natural logarithm, so that the demand function has a constant price elasticity.
(i)	 Why is it a good idea to have a time trend in the equation?
(ii)	 The supply of tickets is fixed by the stadium capacity; assume this has not changed over the  

10 years. This means that quantity supplied does not vary with price. Does this mean that price 
is necessarily exogenous in the demand equation? (Hint: The answer is no.)

(iii)	 Suppose that the nominal price of admission changes slowly—say, at the beginning of each 
season. The athletic office chooses price based partly on last season’s average attendance, as 
well as last season’s team success. Under what assumptions is last season’s winning percentage 
1SEASPERCt21 2  a valid instrumental variable for lPRICEt?

(iv)	 Does it seem reasonable to include the (log of the) real price of men’s basketball games in the 
equation? Explain. What sign does economic theory predict for its coefficient? Can you think 
of another variable related to men’s basketball that might belong in the women’s attendance 
equation?

(v)	 If you are worried that some of the series, particularly lATTEND and lPRICE, have unit roots, 
how might you change the estimated equation?

(vi)	 If some games are sold out, what problems does this cause for estimating the demand function? 
(Hint: If a game is sold out, do you necessarily observe the true demand?)

8	 How big is the effect of per-student school expenditures on local housing values? Let HPRICE be the 
median housing price in a school district and let EXPEND be per-student expenditures. Using panel 
data for the years 1992, 1994, and 1996, we postulate the model 

	  lHPRICEit 5 ut 1 b1lEXPENDit 1 b2lPOLICEit 1 b3lMEDINCit 	
	  1 b4PROPTAXit 1 ai1 1 uit1, 	

where POLICEit is per capita police expenditures, MEDINCit is median income, and PROPTAXit is 
the property tax rate; l denotes natural logarithm. Expenditures and housing price are simultaneously 
determined because the value of homes directly affects the revenues available for funding schools.

Suppose that, in 1994, the way schools were funded was drastically changed: rather than  
being raised by local property taxes, school funding was largely determined at the state level. Let 
lSTATEALLit denote the log of the state allocation for district i in year t, which is exogenous in the 
preceding equation, once we control for expenditures and a district fixed effect. How would you 
estimate the bj?
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Computer Exercises
C1	 Use SMOKE for this exercise.

(i)	 A model to estimate the effects of smoking on annual income (perhaps through lost work days 
due to illness, or productivity effects) is 

	 log 1 income 2 5 b0 1 b1cigs 1 b2educ 1 b3age 1 b4age2 1 u1,

where cigs is number of cigarettes smoked per day, on average. How do you interpret b1?
(ii)	 To reflect the fact that cigarette consumption might be jointly determined with income, a 

demand for cigarettes equation is 

	  cigs 5 g0 1 g1log 1 income 2 1 g2educ 1 g3age 1 g4age2	

	  1 g5log 1cigpric 2 1 g6restaurn 1 u2, 	

	 where cigpric is the price of a pack of cigarettes (in cents) and restaurn is a binary variable 
equal to unity if the person lives in a state with restaurant smoking restrictions. Assuming these 
are exogenous to the individual, what signs would you expect for g5 and g6?

(iii)	 Under what assumption is the income equation from part (i) identified?
(iv)	 Estimate the income equation by OLS and discuss the estimate of b1.
(v)	 Estimate the reduced form for cigs. (Recall that this entails regressing cigs on all exogenous 

variables.) Are log(cigpric) and restaurn significant in the reduced form?
(vi)	 Now, estimate the income equation by 2SLS. Discuss how the estimate of b1 compares with the 

OLS estimate.
(vii)	 Do you think that cigarette prices and restaurant smoking restrictions are exogenous in the 

income equation?

C2	 Use MROZ for this exercise.
(i)	 Reestimate the labor supply function in Example 16.5, using log(hours) as the dependent vari-

able. Compare the estimated elasticity (which is now constant) to the estimate obtained from 
equation (16.24) at the average hours worked.

(ii)	 In the labor supply equation from part (i), allow educ to be endogenous because of omitted 
ability. Use motheduc and fatheduc as IVs for educ. Remember, you now have two endogenous 
variables in the equation.

(iii)	 Test the overidentifying restrictions in the 2SLS estimation from part (ii). Do the IVs pass the test?

C3	 Use the data in OPENNESS for this exercise.
(i)	 Because log(pcinc) is insignificant in both (16.22) and the reduced form for open, drop it from 

the analysis. Estimate (16.22) by OLS and IV without log(pcinc). Do any important conclusions 
change?

(ii)	 Still leaving log(pcinc) out of the analysis, is land or log(land) a better instrument for open? 
(Hint: Regress open on each of these separately and jointly.)

(iii)	 Now, return to (16.22). Add the dummy variable oil to the equation and treat it as exogenous. 
Estimate the equation by IV. Does being an oil producer have a ceteris paribus effect on 
inflation?

C4	 Use the data in CONSUMP for this exercise.
(i)	 In Example 16.7, use the method from Section 15-5 to test the single overidentifying restriction 

in estimating (16.35). What do you conclude?
(ii)	 Campbell and Mankiw (1990) use second lags of all variables as IVs because of potential data 

measurement problems and informational lags. Reestimate (16.35), using only gct22, gyt22, and 
r3t22 as IVs. How do the estimates compare with those in (16.36)?

(iii)	 Regress gyt on the IVs from part (ii) and test whether gyt is sufficiently correlated with them. 
Why is this important?
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C5	 Use the Economic Report of the President (2005 or later) to update the data in CONSUMP, at least 
through 2003. Reestimate equation (16.35). Do any important conclusions change?

C6	 Use the data in CEMENT for this exercise.
(i)	 A static (inverse) supply function for the monthly growth in cement price (gprc) as a function of 

growth in quantity (gcem) is 

	 gprct 5 a1gcemt 1 b0 1 b1gprcpet 1 b2febt 1 p 1 b12dect 1 us
t ,	

	 where gprcpet (growth in the price of petroleum) is assumed to be exogenous and feb, . . . , dec 
are monthly dummy variables. What signs do you expect for a1 and b1? Estimate the equation 
by OLS. Does the supply function slope upward?

(ii)	 The variable gdefs is the monthly growth in real defense spending in the United States. What do 
you need to assume about gdefs for it to be a good IV for gcem? Test whether gcem is partially 
correlated with gdefs. (Do not worry about possible serial correlation in the reduced form.) Can 
you use gdefs as an IV in estimating the supply function?

(iii)	 Shea (1993) argues that the growth in output of residential (gres) and nonresidential (gnon) con-
struction are valid instruments for gcem. The idea is that these are demand shifters that should 
be roughly uncorrelated with the supply error us

t . Test whether gcem is partially correlated with 
gres and gnon; again, do not worry about serial correlation in the reduced form.

(iv)	 Estimate the supply function, using gres and gnon as IVs for gcem. What do you conclude about 
the static supply function for cement? [The dynamic supply function is, apparently, upward 
sloping; see Shea (1993).]

C7	 Refer to Example 13.9 and the data in CRIME4,
(i)	 Suppose that, after differencing to remove the unobserved effect, you think Dlog 1polpc 2  is 

simultaneously determined with Dlog 1crmrte 2 ; in particular, increases in crime are associ-
ated with increases in police officers. How does this help to explain the positive coefficient on 
Dlog 1polpc 2  in equation (13.33)?

(ii)	 The variable taxpc is the taxes collected per person in the county. Does it seem reasonable to 
exclude this from the crime equation?

(iii)	 Estimate the reduced form for Dlog 1polpc 2  using pooled OLS, including the potential IV, 
Dlog 1 taxpc 2 . Does it look like Dlog 1 taxpc 2  is a good IV candidate? Explain.

(iv)	 Suppose that, in several of the years, the state of North Carolina awarded grants to some coun-
ties to increase the size of their county police force. How could you use this information to esti-
mate the effect of additional police officers on the crime rate?

C8	 Use the data set in FISH, which comes from Graddy (1995), to do this exercise. The data set is also used 
in Computer Exercise C9 in Chapter 12. Now, we will use it to estimate a demand function for fish.
(i)	 Assume that the demand equation can be written, in equilibrium for each time period, as 

	  log 1 totqtyt 2 5 a1log 1avgprct 2 1 b10 1 b11mont 1 b12tuest	

	  1 b13wedt 1 b14thurst 1 ut1, 	

so that demand is allowed to differ across days of the week. Treating the price variable as 
endogenous, what additional information do we need to estimate the demand-equation param-
eters consistently?

(ii)	 The variables wave2t and wave3t are measures of ocean wave heights over the past several 
days. What two assumptions do we need to make in order to use wave2t and wave3t as IVs for 
log 1avgprct 2  in estimating the demand equation?

(iii)	 Regress log 1avgprct 2  on the day-of-the-week dummies and the two wave measures. Are wave2t 
and wave3t jointly significant? What is the p-value of the test?

(iv)	 Now, estimate the demand equation by 2SLS. What is the 95% confidence interval for the price 
elasticity of demand? Is the estimated elasticity reasonable?
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(v)	 Obtain the 2SLS residuals, ût1. Add a single lag, ût21,1 in estimating the demand equation by 
2SLS. Remember, use ût21,1 as its own instrument. Is there evidence of AR(1) serial correlation 
in the demand equation errors?

(vi)	 Given that the supply equation evidently depends on the wave variables, what two assumptions 
would we need to make in order to estimate the price elasticity of supply?

(vii)	 In the reduced form equation for log 1avgprct 2 , are the day-of-the-week dummies jointly signifi-
cant? What do you conclude about being able to estimate the supply elasticity?

C9	 For this exercise, use the data in AIRFARE, but only for the year 1997.
(i)	 A simple demand function for airline seats on routes in the United States is 

	 log 1passen 2 5 b10 1 a1log 1 fare 2 1 b11log 1dist 2 1 b12 3log 1dist 2 42 1 u1,

	 where 

	  passen 5 average passengers per day,

	  fare 5 average airfare, and 	

	  dist 5 the route distance 1 in miles 2 .	
	 If this is truly a demand function, what should be the sign of a1?
(ii)	 Estimate the equation from part (i) by OLS. What is the estimated price elasticity?
(iii)	 Consider the variable concen, which is a measure of market concentration. (Specifically, it is the 

share of business accounted for by the largest carrier.) Explain in words what we must assume 
to treat concen as exogenous in the demand equation.

(iv)	 Now assume concen is exogenous to the demand equation. Estimate the reduced form for 
log(fare) and confirm that concen has a positive (partial) effect on log(fare).

(v)	 Estimate the demand function using IV. Now what is the estimated price elasticity of demand? 
How does it compare with the OLS estimate?

(vi)	 Using the IV estimates, describe how demand for seats depends on route distance.

C10	 Use the entire panel data set in AIRFARE for this exercise. The demand equation in a simultaneous 
equations unobserved effects model is 

	 log 1passenit 2 5 ut1 1 a1log 1 fareit 2 1 ai1 1 uit1,

where we absorb the distance variables into ai1.
(i)	 Estimate the demand function using fixed effects, being sure to include year dummies to 

account for the different intercepts. What is the estimated elasticity?
(ii)	 Use fixed effects to estimate the reduced form 

	 log 1 fareit 2 5 ut2 1 p21concenit 1 ai2 1 vit2.

	 Perform the appropriate test to ensure that concenit can be used as an IV for log 1 fareit 2 .
(iii)	 Now estimate the demand function using the fixed effects transformation along with IV, as in 

equation (16.42). What is the estimated elasticity? Is it statistically significant?

C11	 A common method for estimating Engel curves is to model expenditure shares as a function of total 
expenditure, and possibly demographic variables. A common specification has the form 

	 sgood 5 b0 1 b1ltotexpend 1 demographics 1 u,

where sgood is the fraction of spending on a particular good out of total expenditure and ltotexpend is 
the log of total expenditure. The sign and magnitude of b1 are of interest across various expenditure 
categories.

To account for the potential endogeneity of ltotexpend—which can be viewed as an omitted 
variables or simultaneous equations problem, or both—the log of family income is often used as an 
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instrumental variable. Let lincome denote the log of family income. For the remainder of this question, 
use the data in EXPENDSHARES, which comes from Blundell, Duncan, and Pendakur (1998).
(i)	 Use sfood, the share of spending on food, as the dependent variable. What is the range of values 

of sfood? Are you surprised there are no zeros?
(ii)	 Estimate the equation 

	 sfood 5 b0 1 b1ltotexpend 1 b2age 1 b3kids 1 u	 [16.43]

	 by OLS and report the coefficient on ltotexpend, b̂OLS,1, along with its heteroskedasticity-robust 
standard error. Interpret the result.

(iii)	 Using lincome as an IV for ltotexpend, estimate the reduced form equation for ltotexpend; be 
sure to include age and kids. Assuming lincome is exogenous in (16.43), is lincome a valid IV 
for ltotexpend?

(iv)	 Now estimate (16.43) by instrumental variables. How does b̂IV,1 compare with b̂OLS,1? What 
about the robust 95% confidence intervals?

(v)	 Use the test in Section 15-5 to test the null hypothesis that ltotexpend is exogenous in (16.43). 
Be sure to report and interpret the p-value. Are there any overidentifying restrictions to test?

(vi)	 Substitute salcohol for sfood in (16.43) and estimate the equation by OLS and 2SLS. Now what 
do you find for the coefficients on ltotexpend?

C12	 Use the data in PRISON.DTA to answer the following questions. Refer to Example 16.8. In the data 
set, variables beginning with “g” are growth rates from one year to the next, obtained as the changes 
in the natural log. For example, gcrivit 5 log(crivit) 2 log(crivi,t21). Variables beginning with “c” are 
changes in levels from one year to the next, for example, cunemit 5 unemit 2 unemi,t21.
(i)	 Estimate the equation

	 gcrivit 5 jt 1 a1gprisit 1 b1gincpcit 1 b2gpolpcit 1 b3cag0_14it 1 b4cag15_17it 

	 1 b5cag18_24it 1 b6cag25_34it 1 b7cunemit 1 b8cblackit 1 b9cmetroit 1 Duit

	 by OLS and verify that you obtain â1 5 20.181 (se 5 .048). The parameters jt are to remind 
you to include year dummies for 1981 through 1993.

(ii)	 Estimate the reduced form equation for gprisit, where final1it and final2it are the instruments:

	 gprisit 5 ht 1 g1 final1it 1 g2  final2it 1 p1gincpcit 1 p2gpolpcit 1 p3cag0_14it

	 1 p4cag15_17it 1 p5cag18_ 24it 1 p6cag25_34it 1 p7cunemit 1 p8cblackit

	 1 p9cmetroit 1 Duit

	 Verify that g1 and g2 are both negative. Are they each statistically significant? What is the F 
statistic for H0 : g1 5 g2 5 0? (Remember again to put in a full set of year dummies.)

(iii)	 Obain the 2SLS estimates of the equation in part (i), using final1it and final2it as instruments for 
gprisit. Verify that you obtain â1 5 21.032 (se 5 .370).

(iv)	 If you have access to econometrics software that computes standard errors robust to heteroske-
dasticity and serial correlation, obtain them for the 2SLS estimate in part (iii). What happens to 
the standard error of â1?

(v)	 Reestimate the reduced form in part (ii) using the differences, Dfinal1it and Dfinal2it, as the 
instruments. (You will lose 1980 in differencing the instruments.) Do Dfinal1it and Dfinal2it 
seem like sufficiently strong instruments for gprisit? In particular, do you prefer using the 
differences or levels as the IVS? Estimate the reduced form in part (ii) dropping 1980 to be 
sure that you reach your conclusion on instrument strength using the same set of data.

58860_ch16_hr_534-558.indd   558 10/18/18   4:44 PM


	wooldridge-7e-chpt15-iv
	Chapter 15: Instrumental Variables Estimation and Two-Stage Least Squares
	15-1 Motivation: Omitted Variables in a Simple Regression Model
	15-1a Statistical Inference with the IV Estimator
	15-1b Properties of IV with a Poor Instrumental Variable
	15-1c Computing R-Squared after IV Estimation

	15-2 IV Estimation of the Multiple Regression Model
	15-3 Two-Stage Least Squares
	15-3a A Single Endogenous Explanatory Variable
	15-3b Multicollinearity and 2SLS
	15-3c Detecting Weak Instruments
	15-3d Multiple Endogenous Explanatory Variables
	15-3e Testing Multiple Hypotheses after 2SLS Estimation

	15-4 IV Solutions to Errors-in-Variables Problems
	15-5 Testing for Endogeneity and Testing Overidentifying Restrictions
	15-5a Testing for Endogeneity
	15-5b Testing Overidentification Restrictions

	15-6 2SLS with Heteroskedasticity
	15-7 Applying 2SLS to Time Series Equations
	15-8 Applying 2SLS to Pooled Cross Sections and Panel Data
	Summary
	Key Terms
	Problems
	Computer Exercises


	wooldridge-7e-chpt16-sem
	Chapter 16: Simultaneous Equations Models
	16-1 The Nature of Simultaneous Equations Models
	16-2 Simultaneity Bias in OLS
	16-3 Identifying and Estimating a Structural Equation
	16-3a Identification in a Two-Equation System
	16-3b Estimation by 2SLS

	16-4 Systems with More Than Two Equations
	16-4a Identification in Systems with Three or More Equations
	16-4b Estimation

	16-5 Simultaneous Equations Models with Time Series
	16-6 Simultaneous Equations Models with Panel Data
	Summary
	Key Terms
	Problems
	Computer Exercises



