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Chapter 12

Instrumental Variables

12.1 Introduction

The concepts of endogeneity and instrumental variable are fundamental to econometrics, and mark
a substantial departure from other branches of statistics. The ideas of endogeneity arise naturally in eco-
nomics from models of simultaneous equations, most notably the classic supply/demand model of price
determination.

The identification problem in simultaneous equations dates back to Philip Wright (1915) and Work-
ing (1927). The method of instrumental variables first appears in an Appendix of a 1928 book by Philip
Wright, though the authorship is sometimes credited to his son Sewell Wright. The label “instrumental
variables” was introduced by Reiersøl (1945). An excellent review of the history of instrumental variables
is Stock and Trebbi (2003).

12.2 Overview

We say that there is endogeneity in the linear model

Y = X ′β+e (12.1)

if β is the parameter of interest and
E [X e] 6= 0. (12.2)

This is a core problem in econometrics and largely differentiates the field from statistics. To distinguish
(12.1) from the regression and projection models, we will call (12.1) a structural equation and β a struc-
tural parameter. When (12.2) holds, it is typical to say that X is endogenous for β.

Endogeneity cannot happen if the coefficient is defined by linear projection. Indeed, we can define
the linear projection coefficient β∗ = E[

X X ′]−1
E [X Y ] and linear projection equation

Y = X ′β∗+e∗

E
[

X e∗
]= 0.

However, under endogeneity (12.2) the projection coefficient β∗ does not equal the structural parameter
β. Indeed,

β∗ = (
E
[

X X ′])−1
E [X Y ]

= (
E
[

X X ′])−1
E
[

X
(
X ′β+e

)]
=β+ (

E
[

X X ′])−1
E [X e] 6=β
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the final relation because E [X e] 6= 0.
Thus endogeneity requires that the coefficient be defined differently than projection. We describe

such definitions as structural. We will present three examples in the following section.
Endogeneity implies that the least squares estimator is inconsistent for the structural parameter.

Indeed, under i.i.d. sampling, least squares is consistent for the projection coefficient.

β̂−→
p

(
E
[

X X ′])−1
E [X Y ] =β∗ 6=β.

The inconsistency of least squares is typically referred to as endogeneity bias or estimation bias due to
endogeneity. This is an imperfect label as the actual issue is inconsistency, not bias.

As the structural parameter β is the parameter of interest, endogeneity requires the development of
alternative estimation methods. We discuss those in later sections.

12.3 Examples

The concept of endogeneity may be easiest to understand by example. We discuss three. In each case
it is important to see how the structural parameter β is defined independently from the linear projection
model.

Example: Measurement error in the regressor. Suppose that (Y , Z ) are joint random variables,
E [Y | Z ] = Z ′β is linear, andβ is the structural parameter. Z is not observed. Instead we observe X = Z+u
where u is a k × 1 measurement error, independent of e and Z . This is an example of a latent variable
model, where “latent” refers to an unobserved structural variable.

The model X = Z +u with Z and u independent and E [u] = 0 is known as classical measurement
error. This means that X is a noisy but unbiased measure of Z .

By substitution we can express Y as a function of the observed variable X .

Y = Z ′β+e = (X −u)′β+e = X ′β+ v

where v = e −u′β. This means that (Y , X ) satisfy the linear equation

Y = X ′β+ v

with an error v . But this error is not a projection error. Indeed,

E [X v] = E[
(Z +u)

(
e −u′β

)]=−E[
uu′]β 6= 0

if β 6= 0 and E
[
uu′] 6= 0. As we learned in the previous section, if E [X v] 6= 0 then least squares estimation

will be inconsistent.
We can calculate the form of the projection coefficient (which is consistently estimated by least

squares). For simplicity suppose that k = 1. We find

β∗ =β+ E [X v]

E
[

X 2
] =β

(
1− E

[
u2

]
E
[

X 2
])

.

Since E
[
u2

]
/E

[
X 2

] < 1 the projection coefficient shrinks the structural parameter β towards zero. This
is called measurement error bias or attenuation bias.

To illustrate, Figure 12.1(a) displays the impact of measurement error on the regression line. The
three solid points are pairs (Y , Z ) which are measured without error. The regression function drawn
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through these three points is marked as “No Measurement Error”. The six open circles mark pairs (Y , X )
where X = Z +u with u = {+1,−1}. Thus X is a mis-measured version of Z . The six open circles spread
the joint distribution along the x-axis, but not along the y-axis. The regression line drawn for these six
points is marked as “With Measurement Error”. You can see that the latter regression line is flattened
relative to the original regression function. This is the attenuation bias due to measurement error.
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Figure 12.1: Examples of Endogeneity

Example: Supply and Demand. The variables Q and P (quantity and price) are determined jointly
by the demand equation

Q =−β1P +e1

and the supply equation
Q =β2P +e2.

Assume that e = (e1,e2) satisfies E [e] = 0 and E
[
ee ′

]= I 2 (the latter for simplicity). The question is: if we
regress Q on P , what happens?

It is helpful to solve for Q and P in terms of the errors. In matrix notation,[
1 β1

1 −β2

](
Q
P

)
=

(
e1

e2

)
so (

Q
P

)
=

[
1 β1

1 −β2

]−1 (
e1

e2

)
=

[
β2 β1

1 −1

](
e1

e2

)(
1

β1 +β2

)
=

( (
β2e1 +β1e2

)
/(β1 +β2)

(e1 −e2)/(β1 +β2)

)
.
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The projection of Q on P yields Q =β∗P +e∗ with E [Pe∗] = 0 and the projection coefficient is

β∗ = E [PQ]

E
[
P 2

] = β2 −β1

2
.

The projection coefficient β∗ equals neither the demand slope β1 nor the supply slope β2, but equals an
average of the two. (The fact that it is a simple average is an artifact of the covariance structure.)

The OLS estimator satisfies β̂ −→
p
β∗ and the limit does not equal either β1 or β2. This is called si-

multaneous equations bias. This occurs generally when Y and X are jointly determined, as in a market
equilibrium.

Generally, when both the dependent variable and a regressor are simultaneously determined then
the regressor should be treated as endogenous.

To illustrate, Figure 12.1(b) draws a supply/demand model with Quantity on the y-axis and Price on
the x-axis. The supply and demand equations are Q = P +ε1 and Q = 4−P −ε2, respectively. Suppose
that the errors each have the Rademacher distribution ε ∈ {−1,+1}. This model has four equilibrium
outcomes, marked by the four points in the figure. The regression line through these four points has a
slope of zero and is marked as “Regression”. This is what would be measured by a least squares regression
of observed quantity on observed price. This is endogeneity bias due to simultaneity.

Example: Choice Variables as Regressors. Take the classic wage equation

log
(
wage

)=βeducation+e

with β the average causal effect of education on wages. If wages are affected by unobserved ability, and
individuals with high ability self-select into higher education, then e contains unobserved ability, so
education and e will be positively correlated. Hence education is endogenous. The positive correlation
means that the linear projection coefficient β∗ will be upward biased relative to the structural coefficient
β. Thus least squares (which is estimating the projection coefficient) will tend to over-estimate the causal
effect of education on wages.

This type of endogeneity occurs generally when Y and X are both choices made by an economic
agent, even if they are made at different points in time.

Generally, when both the dependent variable and a regressor are choice variables made by the same
agent, the variables should be treated as endogenous.

This example was illustrated back in Figure 2.8 which displayed the joint distribution of wages and
education of the population of Jennifers and Georges. In Figure 2.8, the plotted Average Causal Effect
is the structural impact (on average in the population) of college education on wages. The plotted re-
gression line has a larger slope, as it adds the endogeneity bias due to the fact that education is a choice
variable.

12.4 Endogenous Regressors

We have defined endogeneity as the context where a regressor is correlated with the equation error.
The converse of endogeneity is exogeneity. That is, we say a regressor X is exogenous for β if E [X e] =
0. In general the distinction in an economic model is that a regressor X is endogenous if it is jointly
determined with Y , while a regressor X is exogenous if it is determined separately from Y .

In most applications only a subset of the regressors are treated as endogenous. Partition X = (X1, X2)
with dimensions (k1,k2) so that X1 contains the exogenous regressors and X2 contains the endogenous
regressors. As the dependent variable Y is also endogenous, we sometimes differentiate X2 by calling it
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the endogenous right-hand-side variable. Similarly partition β= (β1,β2). With this notation the struc-
tural equation is

Y = X ′
1β1 +X ′

2β2 +e. (12.3)

An alternative notation is as follows. Let Y2 = X2 be the endogenous regressors and rename the depen-
dent variable Y as Y1. Then the structural equation is

Y1 = X ′
1β1 +Y ′

2β2 +e. (12.4)

This is especially useful so that the notation clarifies which variables are endogenous and which exoge-
nous. We also write ~Y = (Y1,Y2) as the set of endogenous variables. We use the notation ~Y so that there
is no confusion with Y as defined in (12.3).

The assumptions regarding the regressors and regression error are

E [X1e] = 0

E [Y2e] 6= 0.

The endogenous regressors Y2 are the critical variables discussed in the examples of the previous
section – simultaneous variables, choice variables, mis-measured regressors – that are potentially corre-
lated with the equation error e. In many applications k2 is small (1 or 2). The exogenous variables X1 are
the remaining regressors (including the equation intercept) and can be low or high dimensional.

12.5 Instruments

To consistently estimateβwe require additional information. One type of information which is com-
monly used in economic applications are what we call instruments.

Definition 12.1 The `× 1 random vector Z is an instrumental variable for
(12.3) if

E [Z e] = 0 (12.5)

E
[

Z Z ′]> 0 (12.6)

rank
(
E
[

Z X ′])= k. (12.7)

There are three components to the definition as given. The first (12.5) is that the instruments are
uncorrelated with the regression error. The second (12.6) is a normalization which excludes linearly
redundant instruments. The third (12.7) is often called the relevance condition and is essential for the
identification of the model, as we discuss later. A necessary condition for (12.7) is that `≥ k.

Condition (12.5) – that the instruments are uncorrelated with the equation error – is often described
as that they are exogenous in the sense that they are determined outside the model for Y .

Notice that the regressors X1 satisfy condition (12.5) and thus should be included as instrumental
variables. They are therefore a subset of the variables Z . Notationally we make the partition

Z =
(

Z1

Z2

)
=

(
X1

Z2

)
k1

`2
. (12.8)
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Here, X1 = Z1 are the included exogenous variables and Z2 are the excluded exogenous variables. That
is, Z2 are variables which could be included in the equation for Y (in the sense that they are uncorrelated
with e) yet can be excluded as they have true zero coefficients in the equation. With this notation we can
also write the structural equation (12.4) as

Y1 = Z ′
1β1 +Y ′

2β2 +e. (12.9)

This is useful notation as it clarifies that the variable Z1 is exogenous and the variable Y2 is endogenous.
Many authors describe Z1 as the “exogenous variables”, Y2 as the “endogenous variables”, and Z2 as

the “instrumental variables”.
We say that the model is just-identified if `= k and over-identified if `> k.
What variables can be used as instrumental variables? From the definition E [Z e] = 0 the instrument

must be uncorrelated with the equation error, meaning that it is excluded from the structural equation as
mentioned above. From the rank condition (12.7) it is also important that the instrumental variables be
correlated with the endogenous variables Y2 after controlling for the other exogenous variables Z1. These
two requirements are typically interpreted as requiring that the instruments be determined outside the
system for ~Y , causally determine Y2, but do not causally determine Y1 except through Y2.

Let’s take the three examples given above.
Measurement error in the regressor. When X is a mis-measured version of Z a common choice for

an instrument Z2 is an alternative measurement of Z . For this Z2 to satisfy the property of an instrumen-
tal variable the measurement error in Z2 must be independent of that in X .

Supply and Demand. An appropriate instrument for price P in a demand equation is a variable Z2

which influences supply but not demand. Such a variable affects the equilibrium values of P and Q but
does not directly affect price except through quantity. Variables which affect supply but not demand are
typically related to production costs.

An appropriate instrument for price in a supply equation is a variable which influences demand but
not supply. Such a variable affects the equilibrium values of price and quantity but only affects price
through quantity.

Choice Variable as Regressor. An ideal instrument affects the choice of the regressor (education)
but does not directly influence the dependent variable (wages) except through the indirect effect on the
regressor. We will discuss an example in the next section.

12.6 Example: College Proximity

In a influential paper David Card (1995) suggested if a potential student lives close to a college this
reduces the cost of attendence and thereby raises the likelihood that the student will attend college.
However, college proximity does not directly affect a student’s skills or abilities so should not have a
direct effect on his or her market wage. These considerations suggest that college proximity can be used
as an instrument for education in a wage regression. We use the simplest model reported in Card’s paper
to illustrate the concepts of instrumental variables throughout the chapter.

Card used data from the National Longitudinal Survey of Young Men (NLSYM) for 1976. A baseline
least squares wage regression for his data set is reported in the first column of Table 12.1. The dependent
variable is the log of weekly earnings. The regressors are education (years of schooling), experience (years
of work experience, calculated as age (years) less education+6), experience2/100, Black, south (an indica-
tor for residence in the southern region of the U.S.), and urban (an indicator for residence in a standard
metropolitan statistical area). We drop observations for which wage is missing. The remaining sample
has 3,010 observations. His data is the file Card1995 on the textbook website.
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The point estimate obtained by least squares suggests an 7% increase in earnings for each year of
education.

Table 12.1: Instrumental Variable Wage Regressions

OLS IV(a) IV(b) 2SLS(a) 2SLS(b) LIML
education 0.074 0.132 0.133 0.161 0.160 0.164

(0.004) (0.049) (0.051) (0.040) (0.041) (0.042)
experience 0.084 0.107 0.056 0.119 0.047 0.120

(0.007) (0.021) (0.026) (0.018) (0.025) (0.019)
experience2/100 −0.224 −0.228 −0.080 −0.231 −0.032 −0.231

(0.032) (0.035) (0.133) (0.037) (0.127) (0.037)
Black −0.190 −0.131 −0.103 −0.102 −0.064 −0.099

(0.017) (0.051) (0.075) (0.044) (0.061) (0.045)
south −0.125 −0.105 −0.098 −0.095 −0.086 −0.094

(0.015) (0.023) (0.0284) (0.022) (0.026) (0.022)
urban 0.161 0.131 0.108 0.116 0.083 0.115

(0.015) (0.030) (0.049) (0.026) (0.041) (0.027)
Sargan 0.82 0.52 0.82
p-value 0.37 0.47 0.37

Notes:

1. IV(a) uses college as an instrument for education.

2. IV(b) uses college, age, and age2/100 as instruments for education, experience, and experience2/100.

3. 2SLS(a) uses public and private as instruments for education.

4. 2SLS(b) uses public, private, age, and age2 as instruments for education, experience, and experi-
ence2/100.

5. LIML uses public and private as instruments for education.

As discussed in the previous sections it is reasonable to view years of education as a choice made by
an individual and thus is likely endogenous for the structural return to education. This means that least
squares is an estimate of a linear projection but is inconsistent for coefficient of a structural equation
representing the causal impact of years of education on expected wages. Labor economics predicts that
ability, education, and wages will be positively correlated. This suggests that the population projection
coefficient estimated by least squares will be higher than the structural parameter (and hence upwards
biased). However, the sign of the bias is uncertain because there are multiple regressors and there are
other potential sources of endogeneity.

To instrument for the endogeneity of education, Card suggested that a reasonable instrument is a
dummy variable indicating if the individual grew up near a college. We will consider three measures:

college Grew up in same county as a 4-year college
public Grew up in same county as a 4-year public college
private Grew up in same county as a 4-year private college.

huhua
Highlight
ability, education, and wages

huhua
Highlight
(0.025)

huhua
Highlight
(0.127
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12.7 Reduced Form

The reduced form is the relationship between the endogenous regressors Y2 and the instruments Z .
A linear reduced form model for Y2 is

Y2 = Γ′Z +u2 = Γ′12Z1 +Γ′22Z2 +u2 (12.10)

This is a multivariate regression as introduced in Chapter 11. The `×k2 coefficient matrix Γ is defined
by linear projection:

Γ= E[
Z Z ′]−1

E
[

Z Y ′
2

]
(12.11)

This implies E
[

Z u′
2

]= 0. The projection coefficient (12.11) is well defined and unique under (12.6).
We also construct the reduced form for Y1. Substitute (12.10) into (12.9) to obtain

Y1 = Z ′
1β1 +

(
Γ′12Z1 +Γ′22Z2 +u2

)′
β2 +e

= Z ′
1λ1 +Z ′

2λ2 +u1 (12.12)

= Z ′λ+u1 (12.13)

where

λ1 =β1 +Γ12β2 (12.14)

λ2 = Γ22β2 (12.15)

u1 = u′
2β2 +e.

We can also write
λ= Γβ (12.16)

where

Γ=
[

I k1 Γ12

0 Γ22

]
=

[
I k1

0
Γ

]
.

Together, the reduced form equations for the system are

Y1 =λ′Z +u1

Y2 = Γ′Z +u2.

or

~Y =
[
λ′

1 λ′
2

Γ′12 Γ′22

]
Z +u (12.17)

where u = (u1,u2).
The relationships (12.14)-(12.16) are critically important for understanding the identification of the

structural parameters β1 and β2, as we discuss below. These equations show the tight relationship be-
tween the structural parameters (β1 and β2) and the reduced form parameters (Γ and λ).

The reduced form equations are projections so the coefficients may be estimated by least squares
(see Chapter 11). The least squares estimators of (12.11) and (12.13) are

Γ̂=
(

n∑
i=1

Zi Z ′
i

)−1 (
n∑

i=1
Zi Y ′

2i

)
(12.18)

λ̂=
(

n∑
i=1

Zi Z ′
i

)−1 (
n∑

i=1
Zi Y1i

)
. (12.19)
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12.8 Identification

A parameter is identified if it is a unique function of the probability distribution of the observables.
One way to show that a parameter is identified is to write it as an explicit function of population mo-
ments. For example, the reduced form coefficient matrices Γ and λ are identified because they can be
written as explicit functions of the moments of the variables (Y , X , Z ). That is,

Γ= E[
Z Z ′]−1

E
[

Z Y ′
2

]
(12.20)

λ= E[
Z Z ′]−1

E [Z Y1] . (12.21)

These are uniquely determined by the probability distribution of (Y1,Y2, Z ) if Definition 12.1 holds, be-
cause this includes the requirement that E

[
Z Z ′] is invertible.

We are interested in the structural parameter β. It relates to (λ,Γ) through (12.16). β is identified if
it uniquely determined by this relation. This is a set of ` equations with k unknowns with ` ≥ k. From
linear algebra we know that there is a unique solution if and only if Γ has full rank k.

rank
(
Γ
)
= k. (12.22)

Under (12.22)β can be uniquely solved from (12.16). If (12.22) fails then (12.16) has fewer equations than
coefficients so there is not a unique solution.

We can write Γ= E[
Z Z ′]−1

E
[

Z X ′]. Combining this with (12.16) we obtain

E
[

Z Z ′]−1
E [Z Y1] = E[

Z Z ′]−1
E
[

Z X ′]β
or

E [Z Y1] = E[
Z X ′]β

which is a set of ` equations with k unknowns. This has a unique solution if (and only if)

rank
(
E
[

Z X ′])= k (12.23)

which was listed in (12.7) as a condition of Definition 12.1. (Indeed, this is why it was listed as part
of the definition.) We can also see that (12.22) and (12.23) are equivalent ways of expressing the same
requirement. If this condition fails then β will not be identified. The condition (12.22)-(12.23) is called
the relevance condition.

It is useful to have explicit expressions for the solution β. The easiest case is when `= k. Then (12.22)

implies Γ is invertible so the structural parameter equals β= Γ−1
λ. It is a unique solution because Γ and

λ are unique and Γ is invertible.
When `> k we can solve for β by applying least squares to the system of equations λ= Γβ. This is `

equations with k unknowns and no error. The least squares solution is β=
(
Γ
′
Γ
)−1

Γ
′
λ. Under (12.22) the

matrix Γ
′
Γ is invertible so the solution is unique.

β is identified if rank(Γ) = k, which is true if and only if rank(Γ22) = k2 (by the upper-diagonal struc-
ture of Γ). Thus the key to identification of the model rests on the `2 × k2 matrix Γ22 in (12.10). To
see this, recall the reduced form relationships (12.14)-(12.15). We can see that β2 is identified from
(12.15) alone, and the necessary and sufficient condition is rank(Γ22) = k2. If this is satisfied then the
solution equals β2 = (

Γ′22Γ22
)−1

Γ′22λ2 . β1 is identified from this and (12.14), with the explicit solution

β1 =λ1−Γ12
(
Γ′22Γ22

)−1
Γ′22λ2. In the just-identified case (`2 = k2) these equations simplify as β2 = Γ−1

22λ2

and β1 =λ1 −Γ12Γ
−1
22λ2.
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12.9 Instrumental Variables Estimator

In this section we consider the special case where the model is just-identified so that `= k.
The assumption that Z is an instrumental variable implies that E [Z e] = 0. Making the substitution

e = Y1 −X ′β we find E
[

Z
(
Y1 −X ′β

)]= 0. Expanding,

E [Z Y1]−E[
Z X ′]β= 0.

This is a system of `= k equations and k unknowns. Solving for β we find

β= (
E
[

Z X ′])−1
E [Z Y1] .

This requires that the matrix E
[

Z X ′] is invertible, which holds under (12.7) or equivalently (12.23).
The instrumental variables (IV) estimator β replaces population by sample moments. We find

β̂iv =
(

1

n

n∑
i=1

Zi X ′
i

)−1 (
1

n

n∑
i=1

Zi Y1i

)

=
(

n∑
i=1

Zi X ′
i

)−1 (
n∑

i=1
Zi Y1i

)
. (12.24)

More generally, given any variable W ∈Rk it is common to refer to the estimator

β̂iv =
(

n∑
i=1

Wi X ′
i

)−1 (
n∑

i=1
Wi Y1i

)

as the IV estimator for β using the instrument W .
Alternatively, recall that when ` = k the structural parameter can be written as a function of the

reduced form parameters asβ= Γ−1
λ. Replacing Γ andλ by their least squares estimators (12.18)-(12.19)

we can construct what is called the Indirect Least Squares (ILS) estimator. Using the matrix algebra
representations

β̂ils = Γ̂
−1
λ̂

=
((

Z ′Z
)−1 (

Z ′X
))−1 ((

Z ′Z
)−1 (

Z ′Y 1
))

= (
Z ′X

)−1 (
Z ′Z

)(
Z ′Z

)−1 (
Z ′Y 1

)
= (

Z ′X
)−1 (

Z ′Y 1
)

.

We see that this equals the IV estimator (12.24). Thus the ILS and IV estimators are identical.
Given the IV estimator we define the residual êi = Y1i −X ′

i β̂iv. It satisfies

Z ′ê = Z ′Y 1 −Z ′X
(

Z ′X
)−1 (

Z ′Y 1
)= 0. (12.25)

Since Z includes an intercept this means that the residuals sum to zero and are uncorrelated with the
included and excluded instruments.

To illustrate IV regression we estimate the reduced form equations, treating education as endogenous
and using college as an instrumental variable. The reduced form equations for log(wage) and education
are reported in the first and second columns of Table 12.2.
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Table 12.2: Reduced Form Regressions

log(wage) education education experience experience2/100 education
experience 0.053 −0.410 −0.413

(0.007) (0.032) (0.032)
experience2/100 −0.219 0.073 0.093

(0.033) (0.170) (0.171)
black −0.264 −1.006 −1.468 1.468 0.282 −1.006

(0.018) (0.088) (0.115) (0.115) (0.026) (0.088)
south −0.143 −0.291 −0.460 0.460 0.112 −0.267

(0.017) (0.078) (0.103) (0.103) (0.022) (0.079)
urban 0.185 0.404 0.835 −0.835 −0.176 0.400

(0.017) (0.085) (0.112) (0.112) (0.025) (0.085)
college 0.045 0.337 0.347 −0.347 −0.073

(0.016) (0.081) (0.109) (0.109) (0.023)
public 0.430

(0.086)
private 0.123

(0.101)
age 1.061 −0.061 −0.555

(0.296) (0.296) (0.065)
age2/100 −1.876 1.876 1.313

(0.516) (0.516) (0.116)
F 17.51 8.22 1581 1112 13.87

Of particular interest is the equation for the endogenous regressor education, and the coefficients for
the excluded instruments – in this case college. The estimated coefficient equals 0.337 with a small stan-
dard error. This implies that growing up near a 4-year college increases average educational attainment
by 0.3 years. This seems to be a reasonable magnitude.

Since the structural equation is just-identified with one right-hand-side endogenous variable the
ILS/IV estimate for the education coefficient is the ratio of the coefficient estimates for the instrument
college in the two equations, e.g. 0.045/0.337 = 0.13, implying a 13% return to each year of education.
This is substantially greater than the 7% least squares estimate from the first column of Table 12.1. The
IV estimates of the full equation are reported in the second column of Table 12.1. One first reaction is sur-
prise that the IV estimate is larger than the OLS estimate. The endogeneity of educational choice should
lead to upward bias in the OLS estimator, which predicts that the IV estimate should have been smaller
than the OLS estimator. An alternative explanation may be needed. One possibility is heterogeneous
education effects (when the education coefficient β is heterogenous across individuals). In Section 12.34
we show that in this context the IV estimator picks up this treatment effect for a subset of the population,
and this may explain why IV estimation results in a larger estimated coefficient.

Card (1995) also points out that if education is endogenous then so is our measure of experience as it
is calculated by subtracting education from age. He suggests that we can use the variables age and age2

as instruments for experience and experience2. The age variables are exogenous (not choice variables)
yet highly correlated with experience and experience2. Notice that this approach treats experience2 as a
variable separate from experience. Indeed, this is the correct approach.

Following this recommendation we now have three endogenous regressors and three instruments.
We present the three reduced form equations for the three endogenous regressors in the third through
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fifth columns of Table 12.2. It is interesting to compare the equations for education and experience. The
two sets of coefficients are simply the sign change of the other with the exception of the coefficient on
age. Indeed this must be the case because the three variables are linearly related. Does this cause a
problem for 2SLS? Fortunately, no. The fact that the coefficient on age is not simply a sign change means
that the equations are not linearly singular. Hence Assumption (12.22) is not violated.

The IV estimates using the three instruments college, age, and age2 for the endogenous regressors
education, experience, and experience2 is presented in the third column of Table 12.1. The estimate of
the returns to schooling is not affected by this change in the instrument set, but the estimated return to
experience profile flattens (the quadratic effect diminishes).

The IV estimator may be calculated in Stata using the ivregress 2sls command.

12.10 Demeaned Representation

Does the well-known demeaned representation for linear regression (3.18) carry over to the IV esti-
mator? To see, write the linear projection equation in the format Y1 = X ′β+α+e whereα is the intercept
and X does not contain a constant. Similarly, partition the instrument as (1, Z ) where Z does not contain
a constant. We can write the IV estimator for the i th equation as

Y1i = X ′
i β̂iv + α̂iv + êi .

The orthogonality (12.25) implies the two-equation system

n∑
i=1

(
Y1i −X ′

i β̂iv − α̂iv
)= 0

n∑
i=1

Zi
(
Y1i −X ′

i β̂iv − α̂iv
)= 0.

The first equation implies α̂iv = Y1 −X
′
β̂iv. Substituting into the second equation

n∑
i=1

Zi

((
Y1i −Y1

)
−

(
Xi −X

)′
β̂iv

)
and solving for β̂iv we find

β̂iv =
(

n∑
i=1

Zi

(
Xi −X

)′)−1 (
n∑

i=1
Zi

(
Y1i −Y 1

))

=
(

n∑
i=1

(
Zi −Z

)(
Xi −X

)′)−1 (
n∑

i=1

(
Zi −Z

)(
Y1i −Y 1

))
. (12.26)

Thus the demeaning equations for least squares carry over to the IV estimator. The coefficient esti-
mator β̂iv is a function only of the demeaned data.

12.11 Wald Estimator

In many cases including the Card proximity example the excluded instrument is a binary (dummy)
variable. Let’s focus on that case and suppose that the model has just one endogenous regressor and no
other regressors beyond the intercept. The model can be written as Y = Xβ+α+ e with E [e | Z ] = 0 and
Z binary.
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Take expectations of the structural equation given Z = 1 and Z = 0, respectively. We obtain

E [Y | Z = 1] = E [X | Z = 1]β+α
E [Y | Z = 0] = E [X | Z = 0]β+α.

Subtracting and dividing we obtain an expression for the slope coefficient

β= E [Y | Z = 1]−E [Y | Z = 0]

E [X | Z = 1]−E [X | Z = 0]
. (12.27)

The natural moment estimator replaces the expectations by the averages within the “grouped data”
where Zi = 1 and Zi = 0, respectively. That is, define the group means

Y 1 =
∑n

i=1 Zi Yi∑n
i=1 Zi

, Y 0 =
∑n

i=1 (1−Zi )Yi∑n
i=1 (1−Zi )

X 1 =
∑n

i=1 Zi Xi∑n
i=1 Zi

, X 0 =
∑n

i=1 (1−Zi ) Xi∑n
i=1 (1−Zi )

and the moment estimator

β̂= Y 1 −Y 0

X 1 −X 0
. (12.28)

This is the “Wald estimator” of Wald (1940).
These expressions are rather insightful. (12.27) shows that the structural slope coefficient is the ex-

pected change in Y due to changing the instrument divided by the expected change in X due to changing
the instrument. Informally, it is the change in Y (due to Z ) over the change in X (due to Z ). Equation
(12.28) shows that the slope coefficient can be estimated by the ratio of differences in means.

The expression (12.28) may appear like a distinct estimator from the IV estimator β̂iv but it turns out
that they are the same. That is, β̂= β̂iv. To see this, use (12.26) to find

β̂iv =
∑n

i=1 Zi

(
Yi −Y

)
∑n

i=1 Zi

(
Xi −X

) = Y 1 −Y

X 1 −X
.

Then notice

Y 1 −Y = Y 1 −
(

1

n

n∑
i=1

Zi Y 1 + 1

n

n∑
i=1

(1−Zi )Y 0

)
=

(
1−Z

)(
Y 1 −Y 0

)
and similarly

X 1 −X =
(
1−Z

)(
X 1 −X 0

)
and hence

β̂iv =
(
1−Z

)(
Y 1 −Y 0

)
(
1−Z

)(
X 1 −X 0

) = β̂

as defined in (12.28). Thus the Wald estimator equals the IV estimator.
We can illustrate using the Card proximity example. If we estimate a simple IV model with no covari-

ates we obtain the estimate β̂iv = 0.19. If we estimate the group-mean of log wages and education based
on the instrument college we find
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near college not near college difference
log(wage) 6.311 6.156 0.155
education 13.527 12.698 0.829
ratio 0.19

Based on these estimates the Wald estimator of the slope coefficient is (6.311−6.156)/(13.527−12.698) =
0.155/0.829 = 0.19, the same as the IV estimator.

12.12 Two-Stage Least Squares

The IV estimator described in the previous section presumed ` = k. Now we allow the general case
of `≥ k. Examining the reduced-form equation (12.13) we see

Y1 = Z ′Γβ+u1

E [Z u1] = 0.

Defining W = Γ′Z we can write this as

Y1 =W ′β+u1

E [W u1] = 0.

One way of thinking about this is that Z is set of candidate instruments. The instrument vector W = Γ′Z
is a k-dimentional set of linear combinations.

Suppose that Γwere known. Then we would estimate β by least squares of Y1 on W = Γ′Z

β̂= (
W ′W

)−1 (
W ′Y

)= (
Γ
′
Z ′ZΓ

)−1 (
Γ
′
Z ′Y 1

)
.

While this is infeasible we can estimate Γ from the reduced form regression. Replacing Γwith its estima-
tor Γ̂= (

Z ′Z
)−1 (

Z ′X
)

we obtain

β̂2sls =
(
Γ̂′Z ′Z Γ̂

)−1 (
Γ̂′Z ′Y 1

)
=

(
X ′Z

(
Z ′Z

)−1 Z ′Z
(

Z ′Z
)−1 Z

′
X

)−1
X ′Z

(
Z ′Z

)−1 Z ′Y 1

=
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′Y 1. (12.29)

This is called the two-stage-least squares (2SLS) estimator. It was originally proposed by Theil (1953)
and Basmann (1957) and is a standard estimator for linear equations with instruments.

If the model is just-identified, so that k = `, then 2SLS simplifies to the IV estimator of the previous
section. Since the matrices X ′Z and Z ′X are square we can factor(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1 = (
Z ′X

)−1
((

Z ′Z
)−1

)−1 (
X ′Z

)−1

= (
Z ′X

)−1 (
Z ′Z

)(
X ′Z

)−1 .

(Once again, this only works when k = `.) Then

β̂2sls =
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′Y 1

= (
Z ′X

)−1 (
Z ′Z

)(
X ′Z

)−1 X ′Z
(

Z ′Z
)−1 Z ′Y 1

= (
Z ′X

)−1 (
Z ′Z

)(
Z ′Z

)−1 Z ′Y 1

= (
Z ′X

)−1 Z ′Y 1 = β̂iv
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as claimed. This shows that the 2SLS estimator as defined in (12.29) is a generalization of the IV estimator
defined in (12.24).

There are several alternative representations of the 2SLS estimator which we now describe. First,
defining the projection matrix

P Z = Z
(

Z ′Z
)−1 Z ′ (12.30)

we can write the 2SLS estimator more compactly as

β̂2sls =
(

X ′P Z X
)−1 X ′P Z Y 1. (12.31)

This is useful for representation and derivations but is not useful for computation as the n×n matrix P Z

is too large to compute when n is large.
Second, define the fitted values for X from the reduced form X̂ = P Z X = Z Γ̂. Then the 2SLS estimator

can be written as

β̂2sls =
(

X̂
′
X

)−1
X̂

′
Y 1.

This is an IV estimator as defined in the previous section using X̂ as an instrument for X .
Third, because P Z is idempotent we can also write the 2SLS estimator as

β̂2sls =
(

X ′P Z P Z X
)−1 X ′P Z Y 1 =

(
X̂

′
X̂

)−1
X̂

′
Y 1

which is the least squares estimator obtained by regressing Y1 on the fitted values X̂ .
This is the source of the “two-stage” name as it can be computed as follows.

• Regress X on Z to obtain the fitted X̂ : Γ̂= (
Z ′Z

)−1 (
Z ′X

)
and X̂ = Z Γ̂= P Z X .

• Regress Y1 on X̂ : β̂2sls =
(

X̂
′
X̂

)−1
X̂

′
Y 1.

It is useful to scrutinize the projection X̂ . Recall, X = [Z 1,Y 2] and Z = [Z 1, Z 2]. Notice X̂ 1 = P Z Z 1 =
Z 1 because Z 1 lies in the span of Z . Then X̂ = [

X̂ 1, Ŷ 2
] = [

Z 1, Ŷ 2
]
. This shows that in the second stage

we regress Y1 on Z1 and Ŷ2. This means that only the endogenous variables Y2 are replaced by their fitted
values, Ŷ2 = Γ̂′12Z1 + Γ̂′22Z2.

A fourth representation of 2SLS can be obtained using the FWL Theorem. The third representation
and following discussion showed that 2SLS is obtained as least squares of Y1 on the fitted values (Z1, Ŷ2).
Hence the coefficient β̂2 on the endogenous variables can be found by residual regression. Set P 1 =
Z 1

(
Z ′

1Z 1
)−1 Z ′

1. Applying the FWL theorem we obtain

β̂2 =
(
Ŷ

′
2 (I n −P 1) Ŷ 2

)−1 (
Ŷ

′
2 (I n −P 1)Y 1

)
= (

Y ′
2P Z (I n −P 1)P Z Y 2

)−1 (
Y ′

2P Z (I n −P 1)Y 1
)

= (
Y ′

2 (P Z −P 1)Y 2
)−1 (

Y ′
2 (P Z −P 1)Y 1

)
because P Z P 1 = P 1.

A fifth representation can be obtained by a further projection. The projection matrix P Z can be
replaced by the projection onto the pair [Z 1, Z̃ 2] where Z̃ 2 = (I n −P 1) Z 2 is Z 2 projected orthogonal to

Z 1. Since Z 1 and Z̃ 2 are orthogonal, P Z = P 1 +P 2 where P 2 = Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2. Thus P Z −P 1 = P 2 and

β̂2 =
(
Y ′

2P 2Y 2
)−1 (

Y ′
2P 2Y 1

)
=

(
Y ′

2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2Y 2

)−1 (
Y ′

2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2Y 1

)
. (12.32)
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Given the 2SLS estimator we define the residual êi = Y1i − X ′
i β̂2sls. When the model is overidentified

the instruments and residuals are not orthogonal. That is, Z ′ê 6= 0. It does, however, satisfy

X̂
′
ê = Γ̂′Z ′ê

= X ′Z
(

Z ′Z
)−1 Z ′ê

= X ′Z
(

Z ′Z
)−1 Z ′Y 1 −X ′Z

(
Z ′Z

)−1 Z ′X β̂2sls = 0.

Returning to Card’s college proximity example suppose that we treat experience as exogeneous but
that instead of using the single instrument college (grew up near a 4-year college) we use the two instru-
ments (public, private) (grew up near a public/private 4-year college, respectively). In this case we have
one endogenous variable (education) and two instruments (public, private). The estimated reduced form
equation for education is presented in the sixth column of Table 12.2. In this specification the coefficient
on public – growing up near a public 4-year college – is somewhat larger than that found for the vari-
able college in the previous specification (column 2). Furthermore, the coefficient on private – growing
up near a private 4-year college – is much smaller. This indicates that the key impact of proximity on
education is via public colleges rather than private colleges.

The 2SLS estimates obtained using these two instruments are presented in the fourth column of
Table 12.1. The coefficient on education increases to 0.161, indicating a 16% return to a year of education.
This is roughly twice as large as the estimate obtained by least squares in the first column.

Additionally, if we follow Card and treat experience as endogenous and use age as an instrument
we now have three endogenous variables (education, experience, experience2/100) and four instruments
(public, private, age, age2). We present the 2SLS estimates using this specification in the fifth column of
Table 12.1. The estimate of the return to education remains 16% and the return to experience flattens.

You might wonder if we could use all three instruments – college, public, and private. The answer is
no. This is because college=public+private so the three variables are colinear. Since the instruments are
linearly related the three together would violate the full-rank condition (12.6).

The 2SLS estimator may be calculated in Stata using the ivregress 2sls command.

12.13 Limited Information Maximum Likelihood

An alternative method to estimate the parameters of the structural equation is by maximum likeli-
hood. Anderson and Rubin (1949) derived the maximum likelihood estimator for the joint distribution
of ~Y = (Y1,Y2). The estimator is known as limited information maximum likelihood (LIML).

This estimator is called “limited information” because it is based on the structural equation for Y
combined with the reduced form equation for X2. If maximum likelihood is derived based on a structural
equation for X2 as well this leads to what is known as full information maximum likelihood (FIML). The
advantage of LIML relative to FIML is that the former does not require a structural model for X2 and thus
allows the researcher to focus on the structural equation of interest – that for Y . We do not describe the
FIML estimator as it is not commonly used in applied econometrics.

While the LIML estimator is less widely used among economists than 2SLS it has received a resur-
gence of attention from econometric theorists.

To derive the LIML estimator recall the definition ~Y = (Y1,Y2) and the reduced form (12.17)

~Y =
[
λ′

1 λ2

Γ′12 Γ′22

](
Z1

Z2

)
+u

=Π′
1Z1 +Π′

2Z2 +u (12.33)



CHAPTER 12. INSTRUMENTAL VARIABLES 348

whereΠ1 =
[
λ1 Γ12

]
andΠ2 =

[
λ2 Γ22

]
. The LIML estimator is derived under the assumption that

u is multivariate normal.
Define γ′ = [

1 −β′
2

]
. From (12.15) we find

Π2γ=λ2 −Γ22β2 = 0.

Thus the `2 × (k2 +1) coefficient matrix Π2 in (12.33) has deficient rank. Indeed, its rank must be k2

because Γ22 has full rank.
This means that the model (12.33) is precisely the reduced rank regression model of Section 11.11.

Theorem 11.7 presents the maximum likelihood estimators for the reduced rank parameters. In particu-
lar, the MLE for γ is

γ̂= argmin
γ

γ′~Y ′
M 1~Y γ

γ′~Y ′
MZ ~Y γ

(12.34)

where M 1 = I n − Z 1
(

Z ′
1Z 1

)−1 Z ′
1 and M Z = I n − Z

(
Z ′Z

)−1 Z ′. The minimization (12.34) is sometimes
called the “least variance ratio” problem.

The minimization problem (12.34) is invariant to the scale of γ (that is, γ̂c is equivalently the argmin
for any c) so normalization is required. A convenient choice is γ′~Y ′

MZ ~Y γ= 1. Using this normalization
and the theory of the minimum of quadratic forms (Section A.15) γ̂ is the generalized eigenvector of
~Y

′
M 1~Y with respect to ~Y

′
MZ ~Y associated with the smallest generalized eigenvalue. (See Section A.14

for the definition of generalized eigenvalues and eigenvectors.) Computationally this is straightforward.
For example, in MATLAB the generalized eigenvalues and eigenvectors of the matrix A with respect to B
is found by the command eig(A,B). Once this γ̂ is found any other normalization can be obtained by
rescaling. For example, to obtain the MLE for β2 make the partition γ̂′ = [

γ̂1 γ̂′2
]

and set β̂2 =−γ̂2/γ̂1.
To obtain the MLE for β1 recall the structural equation Y1 = Z ′

1β1+Y ′
2β2+e. Replace β2 with the MLE

β̂2 and apply regression. This yields

β̂1 =
(

Z ′
1Z 1

)−1 Z ′
1

(
Y 1 −Y 2β̂2

)
. (12.35)

These solutions are the MLE for the structural parameters β1 and β2.
Previous econometrics textbooks did not present a derivation of the LIML estimator as the origi-

nal derivation by Anderson and Rubin (1949) is lengthy and not particularly insightful. In contrast the
derivation given here based on reduced rank regression is simple.

There is an alternative (and traditional) expression for the LIML estimator. Define the minimum
obtained in (12.34)

κ̂= min
γ

γ′~Y ′
M 1~Y γ

γ′~Y ′
MZ ~Y γ

(12.36)

which is the smallest generalized eigenvalue of ~Y
′
M 1~Y with respect to ~Y

′
MZ ~Y . The LIML estimator can

be written as
β̂liml =

(
X ′ (I n − κ̂M Z ) X

)−1 (
X ′ (I n − κ̂M Z )Y 1

)
. (12.37)

We defer the derivation of (12.37) until the end of this section. Expression (12.37) does not simplify
computation (because κ̂ requires solving the same eigenvector problem that yields β̂2). However (12.37)
is important for the distribution theory. It also helps reveal the algebraic connection between LIML, least
squares, and 2SLS.

The estimator (12.37) with arbitrary κ is known as a k-class estimator of β. While the LIML estimator
obtains by setting κ= κ̂, the least squares estimator is obtained by setting κ= 0 and 2SLS is obtained by
setting κ= 1. It is worth observing that the LIML solution satisfies κ̂≥ 1.
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When the model is just-identified the LIML estimator is identical to the IV and 2SLS estimators. They
are only different in the over-identified setting. (One corollary is that under just-identification and nor-
mal errors the IV estimator is MLE.)

For inference it is useful to observe that (12.37) shows that β̂liml can be written as an IV estimator

β̂liml =
(

X̃
′
X

)−1 (
X̃

′
Y 1

)
using the instrument

X̃ = (I n − κ̂M Z ) X =
(

X 1

X 2 − κ̂Û 2

)
where Û 2 = MZ X 2 are the reduced-form residuals from the multivariate regression of the endogenous
regressors Y2 on the instruments Z . Expressing LIML using this IV formula is useful for variance estima-
tion.

The LIML estimator has the same asymptotic distribution as 2SLS. However, they have quite differ-
ent behaviors in finite samples. There is considerable evidence that the LIML estimator has reduced
finite sample bias relative to 2SLS when there are many instruments or the reduced form is weak. (We
review these cases in the following sections.) However, on the other hand LIML has wider finite sample
dispersion.

We now derive the expression (12.37). Use the normalization γ′ = [
1 −β′

2

]
to write (12.34) as

β̂2 = argmin
β2

(
Y 1 −Y 2β2

)′ M 1
(
Y 1 −Y 2β2

)(
Y 1 −Y β2

)′ M Z
(
Y 1 −Y 2β2

) .

The first-order-condition for minimization is 2/
(
Y 1 −Y 2β̂2

)′
M Z

(
Y 1 −Y 2β̂2

)
times

0 = Y ′
2M 1

(
Y 1 −Y 2β̂2

)− (
Y 1 −Y 2β̂2

)′
M 1

(
Y 1 −Y 2β̂2

)(
Y 1 −Y 2β̂2

)′
M Z

(
Y 1 −Y 2β̂2

) X ′
2M Z

(
Y 1 −Y 2β̂2

)
= Y ′

2M 1
(
Y 1 −Y 2β̂2

)− κ̂X ′
2M Z

(
Y 1 −Y 2β̂2

)
using definition (12.36). Rewriting,

Y ′
2 (M 1 − κ̂M Z ) X 2β̂2 = X ′

2 (M 1 − κ̂M Z )Y 1. (12.38)

Equation (12.37) is the same as the two equation system

Z ′
1Z 1β̂1 +Z ′

1Y 2β̂2 = Z ′
1Y 1

Y ′
2Z 1β̂1 +

(
Y ′

2 (I n − κ̂M Z )Y 2
)
β̂2 = Y ′

2 (I n − κ̂M Z )Y 1.

The first equation is (12.35). Using (12.35), the second is

Y ′
2Z 1

(
Z ′

1Z 1
)−1 Z ′

1

(
Y 1 −Y 2β̂2

)+ (
Y ′

2 (I n − κ̂M Z )Y 2
)
β̂2 = Y ′

2 (I n − κ̂M Z )Y 1

which is (12.38) when rearranged. We have thus shown that (12.37) is equivalent to (12.35) and (12.38)
and is thus a valid expression for the LIML estimator.

Returning to the Card college proximity example we now present the LIML estimates of the equation
with the two instruments (public, private). They are reported in the final column of Table 12.1. They are
quite similar to the 2SLS estimates.

The LIML estimator may be calculated in Stata using the ivregress liml command.
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Theodore Anderson

Theodore (Ted) Anderson (1918-2016) was a American statistician and econo-
metrician, who made fundamental contributions to multivariate statistical the-
ory. Important contributions include the Anderson-Darling distribution test, the
Anderson-Rubin statistic, the method of reduced rank regression, and his most
famous econometrics contribution – the LIML estimator. He continued working
throughout his long life, even publishing theoretical work at the age of 97!

12.14 Split-Sample IV and JIVE

The ideal instrument for estimation of β is W = Γ′Z . We can write the ideal IV estimator as

β̂ideal =
(

n∑
i=1

Wi X ′
i

)−1 (
n∑

i=1
Wi Yi

)
.

This estimator is not feasible since Γ is unknown. The 2SLS estimator replaces Γ with the multivariate
least squares estimator Γ̂ and Wi with Ŵi = Γ̂′Zi leading to the following representation for 2SLS

β̂2sls =
(

n∑
i=1

Ŵi X ′
i

)−1 (
n∑

i=1
Ŵi Yi

)
.

Since Γ̂ is estimated on the full sample including observation i it is a function of the reduced form
error u which is correlated with the structural error e. It follows that Ŵ and e are correlated, which means
that β̂2sls is biased for β. This correlation and bias disappears asymptotically but it can be important in
applications.

A possible solution to this problem is to replace Ŵ with a predicted value which is uncorrelated with
the error e. One method is the split-sample IV (SSIV) estimator of Angrist and Krueger (1995). Divide
the sample randomly into two independent halves A and B . Use A to estimate the reduced form and
B to estimate the structural coefficient. Specifically, use sample A to construct Γ̂A = (

Z ′
A Z A

)−1 (
Z ′

A X A
)
.

Combine this with sample B to create the predicted values Ŵ B = Z B Γ̂A . The SSIV estimator is β̂ssiv =(
Ŵ

′
B X B

)−1 (
Ŵ

′
B Y B

)
. This has lower bias than β̂2sls.

A limitation of SSIV is that the results will be sensitive to the sample spliting. One split will produce
one estimator; another split will produce a different estimator. Any specific split is arbitrary, so the esti-
mator depends on the specific random sorting of the observations into the samples A and B . A second
limitation of SSIV is that it is unlikely to work well when the sample size n is small.

A much better solution is obtained by a leave-one-out estimator for Γ. Specifically, let

Γ̂(−i ) =
(

Z ′Z −Zi Z ′
i

)−1 (
Z ′X −Zi X ′

i

)
be the least squares leave-one-out estimator of the reduced form matrix Γ, and let Ŵi = Γ̂′(−i )Zi be the

reduced form predicted values. Using Ŵi = Γ̂′(−i )Zi as an instrument we obtain the estimator

β̂jive1 =
(

n∑
i=1

Ŵi X ′
i

)−1 (
n∑

i=1
Ŵi Yi

)
=

(
n∑

i=1
Γ̂′(−i )Zi X ′

i

)−1 (
n∑

i=1
Γ̂′(−i )Zi Yi

)
.
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This was called the jackknife instrumental variables (JIVE1) estimator by Angrist, Imbens, and Krueger
(1999). It first appeared in Phillips and Hale (1977).

Angrist, Imbens, and Krueger (1999) pointed out that a somewhat simpler adjustment also removes
the correlation and bias. Define the estimator and predicted value

Γ̃(−i ) =
(

Z ′Z
)−1 (

Z ′X −Zi X ′
i

)
W̃i = Γ̃′(−i )Zi

which only adjusts the Z ′X component. Their JIVE2 estimator is

β̂jive2 =
(

n∑
i=1

W̃i X ′
i

)−1 (
n∑

i=1
W̃i Yi

)
=

(
n∑

i=1
Γ̃′(−i )Zi X ′

i

)−1 (
n∑

i=1
Γ̃′(−i )Zi Yi

)
.

Using the formula for leave-one-out estimators (Theorem 3.7), the JIVE1 and JIVE2 estimators use
two linear operations: the first to create the predicted values Ŵi or W̃i , and the second to calculate the
IV estimator. Thus the estimators do not require significantly more computation than 2SLS.

An asymptotic distribution theory for JIVE1 and JIVE2 was developed by Chao, Swanson, Hausman,
Newey, and Woutersen (2012).

The JIVE1 and JIVE2 estimators may be calculated in Stata using the jive command. It is not a part
of the standard package but can be easily added.

12.15 Consistency of 2SLS

We now demonstrate the consistency of the 2SLS estimator for the structural parameter. The follow-
ing is a set of regularity conditions.

Assumption 12.1

1. The variables (Y1i , Xi , Zi ), i = 1, ...,n, are independent and identically dis-
tributed.

2. E
[
Y 2

1

]<∞.

3. E‖X ‖2 <∞.

4. E‖Z‖2 <∞.

5. E
[

Z Z ′] is positive definite.

6. E
[

Z X ′] has full rank k.

7. E [Z e] = 0.

Assumptions 12.1.2-4 state that all variables have finite variances. Assumption 12.1.5 states that the
instrument vector has an invertible design matrix, which is identical to the core assumption about re-
gressors in the linear regression model. This excludes linearly redundant instruments. Assumptions
12.1.6 and 12.1.7 are the key identification conditions for instrumental variables. Assumption 12.1.6
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states that the instruments and regressors have a full-rank cross-moment matrix. This is often called the
relevance condition. Assumption 12.1.7 states that the instrumental variables and structural error are
uncorrelated. Assumptions 12.1.5-7 are identical to Definition 12.1.

Theorem 12.1 Under Assumption 12.1, β̂2sls −→p β as n →∞.

The proof of the theorem is provided below.
This theorem shows that the 2SLS estimator is consistent for the structural coefficientβunder similar

moment conditions as the least squares estimator. The key differences are the instrumental variables
assumption E [Z e] = 0 and the relevance condition rank

(
E
[

Z X ′])= k.
The result includes the IV estimator (when `= k) as a special case.
The proof of this consistency result is similar to that for least squares. Take the structural equation

Y = Xβ+e in matrix format and substitute it into the expression for the estimator. We obtain

β̂2sls =
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′ (Xβ+e
)

=β+
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′e. (12.39)

This separates out the stochastic component. Re-writing and applying the WLLN and CMT

β̂2sls −β=
((

1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′X

))−1

×
(

1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′e

)

−→
p

(
Q X Z Q−1

Z Z Q Z X
)−1

Q X Z Q−1
Z ZE [Z e] = 0

where

Q X Z = E[
X Z ′]

Q Z Z = E[
Z Z ′]

Q Z X = E[
Z X ′] .

The WLLN holds under Assumptions 12.1.1 and 12.1.2-4. The continuous mapping theorem applies if
the matrices Q Z Z and Q X Z Q−1

Z Z Q Z X are invertible, which hold under Assumptions 12.1.5 and 12.1.6. The
final equality uses Assumption 12.1.7.

12.16 Asymptotic Distribution of 2SLS

We now show that the 2SLS estimator satisfies a central limit theorem. We first state a set of sufficient
regularity conditions.
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Assumption 12.2 In addition to Assumption 12.1,

1. E
[
Y 4

1

]<∞.

2. E‖X ‖4 <∞.

3. E‖Z‖4 <∞.

4. Ω= E[
Z Z ′e2

]
is positive definite.

Assumption 12.2 strengthens Assumption 12.1 by requiring that the dependent variable and instru-
ments have finite fourth moments. This is used to establish the central limit theorem.

Theorem 12.2 Under Assumption 12.2, as n →∞.

p
n

(
β̂2sls −β

)−→
d

N
(
0,V β

)
where

V β =
(
Q X Z Q−1

Z Z Q Z X
)−1 (

Q X Z Q−1
Z ZΩQ−1

Z Z Q Z X
)(

Q X Z Q−1
Z Z Q Z X

)−1
.

This shows that the 2SLS estimator converges at a
p

n rate to a normal random vector. It shows as
well the form of the covariance matrix. The latter takes a substantially more complicated form than the
least squares estimator.

As in the case of least squares estimation the asymptotic variance simplifies under a conditional ho-
moskedasticity condition. For 2SLS the simplification occurs when E

[
e2 | Z

] = σ2. This holds when Z
and e are independent. It may be reasonable in some contexts to conceive that the error e is indepen-
dent of the excluded instruments Z2, since by assumption the impact of Z2 on Y is only through X , but
there is no reason to expect e to be independent of the included exogenous variables X1. Hence het-
eroskedasticity should be equally expected in 2SLS and least squares regression. Nevertheless, under

homoskedasticity we have the simplificationsΩ=Q Z Zσ
2 and V β =V 0

β

def= (
Q X Z Q−1

Z Z Q Z X
)−1

σ2.
The derivation of the asymptotic distribution builds on the proof of consistency. Using equation

(12.39) we have

p
n

(
β̂2sls −β

)= ((
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′X

))−1 (
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1p
n

Z ′e
)

.

We apply the WLLN and CMT for the moment matrices involving X and Z the same as in the proof of
consistency. In addition, by the CLT for i.i.d. observations

1p
n

Z ′e = 1p
n

n∑
i=1

Zi ei −→
d

N(0,Ω)

because the vector Zi ei is i.i.d. and mean zero under Assumptions 12.1.1 and 12.1.7, and has a finite
second moment as we verify below.
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We obtain

p
n

(
β̂2sls −β

)= ((
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′X

))−1 (
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1p
n

Z ′e
)

−→
d

(
Q X Z Q−1

Z Z Q Z X
)−1

Q X Z Q−1
Z Z N(0,Ω) = N

(
0,V β

)
as stated.

To complete the proof we demonstrate that Z e has a finite second moment under Assumption 12.2.
To see this, note that by Minkowski’s inequality (B.34)(

E
[
e4])1/4 =

(
E
[(

Y1 −X ′β
)4

])1/4 ≤ (
E
[
Y 4

1

])1/4 +∥∥β∥∥(
E‖X ‖4)1/4 <∞

under Assumptions 12.2.1 and 12.2.2. Then by the Cauchy-Schwarz inequality (B.32)

E‖Z e‖2 ≤ (
E‖Z‖4)1/2 (

E
[
e4])1/2 <∞

using Assumptions 12.2.3.

12.17 Determinants of 2SLS Variance

It is instructive to examine the asymptotic variance of the 2SLS estimator to understand the factors
which determine the precision (or lack thereof) of the estimator. As in the least squares case it is more
transparent to examine the variance under the assumption of homoskedasticity. In this case the asymp-
totic variance takes the form

V 0
β =

(
Q X Z Q−1

Z Z Q Z X
)−1

σ2

=
(
E
[

X Z ′](
E
[

Z Z ′])−1
E
[

Z X ′])−1
E
[
e2] .

As in the least squares case we can see that the variance of β̂2sls is increasing in the variance of the error
e and decreasing in the variance of X . What is different is that the variance is decreasing in the (matrix-
valued) correlation between X and Z .

It is also useful to observe that the variance expression is not affected by the variance structure of
Z . Indeed, V 0

β
is invariant to rotations of Z (if you replace Z with C Z for invertible C the expression

does not change). This means that the variance expression is not affected by the scaling of Z and is not
directly affected by correlation among the Z .

We can also use this expression to examine the impact of increasing the instrument set. Suppose we
partition Z = (Za , Zb) where dim(Za) ≥ k so we can construct a 2SLS estimator using Za alone. Let β̂a

and β̂ denote the 2SLS estimators constructed using the instrument sets Za and (Za , Zb), respectively.
Without loss of generality we can assume that Za and Zb are uncorrelated (if not, replace Zb with the
projection error after projecting onto Za). In this case both E

[
Z Z ′] and

(
E
[

Z Z ′])−1 are block diagonal
so

avar
[
β̂
]= (

E
[

X Z ′](
E
[

Z Z ′])−1
E
[

Z X ′])−1
σ2

=
(
E
[

X Z ′
a

](
E
[

Za Z ′
a

])−1
E
[

Za X ′]+E[
X Z ′

b

](
E
[

Zb Z ′
b

])−1
E
[

Zb X ′])−1
σ2

≤
(
E
[

X Z ′
a

](
E
[

Za Z ′
a

])−1
E
[

Za X ′])−1
σ2

= avar
[
β̂a

]
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with strict inequality if E
[

X Z ′
b

] 6= 0. Thus the 2SLS estimator with the full instrument set has a smaller
asymptotic variance than the estimator with the smaller instrument set.

What we have shown is that the asymptotic variance of the 2SLS estimator is decreasing as the num-
ber of instruments increases. From the viewpoint of asymptotic efficiency this means that it is better to
use more instruments (when they are available and are all known to be valid instruments).

Unfortunately there is a catch. It turns out that the finite sample bias of the 2SLS estimator (which
cannot be calculated exactly but can be approximated using asymptotic expansions) is generically in-
creasing linearily as the number of instruments increases. We will see some calculations illustrating this
phenomenon in Section 12.37. Thus the choice of instruments in practice induces a trade-off between
bias and variance.

12.18 Covariance Matrix Estimation

Estimation of the asymptotic covariance matrix V β is done using similar techniques as for least
squares estimation. The estimator is constructed by replacing the population moment matrices by sam-
ple counterparts. Thus

V̂ β =
(
Q̂ X Z Q̂

−1
Z Z Q̂ Z X

)−1 (
Q̂ X Z Q̂

−1
Z Z Ω̂Q̂

−1
Z Z Q̂ Z X

)(
Q̂ X Z Q̂

−1
Z Z Q̂ Z X

)−1
(12.40)

where

Q̂ Z Z = 1

n

n∑
i=1

Zi Z ′
i =

1

n
Z ′Z

Q̂ X Z = 1

n

n∑
i=1

Xi Z ′
i =

1

n
X ′Z

Ω̂= 1

n

n∑
i=1

Zi Z ′
i ê2

i

êi = Yi −X ′
i β̂2sls.

The homoskedastic covariance matrix can be estimated by

V̂
0
β =

(
Q̂ X Z Q̂

−1
Z Z Q̂ Z X

)−1
σ̂2

σ̂2 = 1

n

n∑
i=1

ê2
i .

Standard errors for the coefficients are obtained as the square roots of the diagonal elements of
n−1V̂ β. Confidence intervals, t-tests, and Wald tests may all be constructed from the coefficient and
covariance matrix estimates exactly as for least squares regression.

In Stata the ivregress command by default calculates the covariance matrix estimator using the
homoskedastic covariance matrix. To obtain covariance matrix estimation and standard errors with the
robust estimator V̂ β, use the “,r” option.

Theorem 12.3 Under Assumption 12.2, as n →∞, V̂
0
β −→p V 0

β
and V̂ β −→p V β.
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To prove Theorem 12.3 the key is to show Ω̂−→
p
Ω as the other convergence results were established

in the proof of consistency. We defer this to Exercise 12.6.
It is important that the covariance matrix be constructed using the correct residual formula êi = Yi −

X ′
i β̂2sls. This is different than what would be obtained if the “two-stage” computation method were used.

To see this let’s walk through the two-stage method. First, we estimate the reduced form Xi = Γ̂′Zi + ûi

to obtain the predicted values X̂i = Γ̂′Zi . Second, we regress Y on X̂ to obtain the 2SLS estimator β̂2sls.
This latter regression takes the form

Yi = X̂ ′
i β̂2sls + v̂i (12.41)

where v̂i are least squares residuals. The covariance matrix (and standard errors) reported by this regres-
sion are constructed using the residual v̂i . For example, the homoskedastic formula is

V̂ β =
(

1

n
X̂

′
X̂

)−1

σ̂2
v =

(
Q̂ X Z Q̂

−1
Z Z Q̂ Z X

)−1
σ̂2

v

σ̂2
v = 1

n

n∑
i=1

v̂2
i

which is proportional to the variance estimator σ̂2
v rather than σ̂2. This is important because the residual

v̂ differs from ê. We can see this because the regression (12.41) uses the regressor X̂ rather than X .
Indeed, we calculate that

v̂i = Yi −X ′
i β̂2sls +

(
Xi − X̂i

)′
β̂2sls = êi + û′

i β̂2sls 6= êi .

This means that standard errors reported by the regression (12.41) will be incorrect.
This problem is avoided if the 2SLS estimator is constructed directly and the standard errors calcu-

lated with the correct formula rather than taking the “two-step” shortcut.

12.19 LIML Asymptotic Distribution

In this section we show that the LIML estimator is asymptotically equivalent to the 2SLS estimator.
We recommend, however, a different covariance matrix estimator based on the IV representation.

We start by deriving the asymptotic distribution. Recall that the LIML estimator has several repre-
sentations including

β̂liml =
(

X ′ (I n − κ̂M Z ) X
)−1 (

X ′ (I n − κ̂M Z )Y 1
)

where

κ̂= min
γ

γ′~Y ′
M 1~Y γ

γ′~Y ′
MZ ~Y γ

and γ= (1,−β′
2)′. For the distribution theory it is useful to rewrite the slope coefficient as

β̂liml =
(

X ′P Z X − µ̂X ′M Z X
)−1 (

X ′P Z Y 1 − µ̂X ′M Z Y 1
)

where

µ̂= κ̂−1 = min
γ

γ′~Y ′
M 1Z 2

(
Z ′

2M 1Z 2
)−1 Z ′

2M 1~Y γ

γ′~Y ′
MZ ~Y γ

.

This second equality holds because the span of Z = [Z 1, Z 2] equals the span of [Z 1, M 1Z 2]. This implies

P Z = Z
(

Z ′Z
)−1 Z ′ = Z 1

(
Z ′

1Z 1
)−1 Z ′

1 +M 1Z 2
(

Z ′
2M 1Z 2

)−1 Z ′
2M 1.
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We now show that nµ̂=Op (1). The reduced form (12.33) implies that

Y = Z 1Π1 +Z 2Π2 +e.

It will be important to note that
Π2 = [λ2,Γ22] = [

Γ22β2,Γ22
]

using (12.15). It follows thatΠ2γ= 0. Note Uγ= e. Then MZ Y γ= MZ e and M 1Y γ= M 1e. Hence

nµ̂= min
γ

γ′~Y ′
M 1Z 2

(
Z ′

2M 1Z 2
)−1 Z ′

2M 1~Y γ

γ′ 1
n
~Y

′
MZ ~Y γ

≤
(

1p
n

e ′M 1Z 2

)( 1
n Z ′

2M 1Z 2
)−1

(
1p
n

Z ′
2M 1e

)
1
n e ′MZ e

=Op (1).

It follows that

p
n

(
β̂liml −β

)= (
1

n
X ′P Z X − µ̂ 1

n
X ′M Z X

)−1 (
1p
n

X ′P Z e −p
nµ̂

1

n
X ′M Z e

)
=

(
1

n
X ′P Z X −op (1)

)−1 (
1p
n

X ′P Z e −op (1)

)
=p

n
(
β̂2sls −β

)+op (1)

which means that LIML and 2SLS have the same asymptotic distribution. This holds under the same
assumptions as for 2SLS.

Consequently, one method to obtain an asymptotically valid covariance estimator for LIML is to use
the 2SLS formula. However, this is not the best choice. Rather, consider the IV representation for LIML

β̂liml =
(

X̃
′
X

)−1 (
X̃

′
Y 1

)
where

X̃ =
(

X 1

X 2 − κ̂Û 2

)
and Û 2 = MZ X 2. The asymptotic covariance matrix formula for an IV estimator is

V̂ β =
(

1

n
X̃

′
X

)−1

Ω̂

(
1

n
X ′X̃

)−1

(12.42)

where

Ω̂= 1

n

n∑
i=1

X̃i X̃i ê2
i

êi = Y1i −X ′
i β̂liml.

This simplifies to the 2SLS formula when κ̂ = 1 but otherwise differs. The estimator (12.42) is a better
choice than the 2SLS formula for covariance matrix estimation as it takes advantage of the LIML estima-
tor structure.
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12.20 Functions of Parameters

Given the distribution theory in Theorems 12.2 and 12.3 it is straightforward to derive the asymptotic
distribution of smooth nonlinear functions of the coefficient estimators.

Specifically, given a function r
(
β
)

: Rk → Θ ⊂ Rq we define the parameter θ = r
(
β
)
. Given β̂2sls a

natural estimator of θ is θ̂2sls = r
(
β̂2sls

)
.

Consistency follows from Theorem 12.1 and the continuous mapping theorem.

Theorem 12.4 Under Assumptions 12.1 and 7.3, as n →∞, θ̂2sls −→p θ.

If r
(
β
)

is differentiable then an estimator of the asymptotic covariance matrix for θ̂2sls is

V̂ θ = R̂
′
V̂ βR̂

R̂ = ∂

∂β
r (β̂2sls)′.

We similarly define the homoskedastic variance estimator as V̂
0
θ = R̂

′
V̂

0
βR̂ .

The asymptotic distribution theory follows from Theorems 12.2 and 12.3 and the delta method.

Theorem 12.5 Under Assumptions 12.2 and 7.3, as n →∞,

p
n

(
θ̂2sls −θ

)−→
d

N(0,V θ)

and V̂ θ −→p V θ where V θ = R ′V βR and R = ∂

∂β
r (β)′.

When q = 1, a standard error for θ̂2sls is s(θ̂2sls) =
√

n−1V̂ θ .
For example, let’s take the parameter estimates from the fifth column of Table 12.1, which are the

2SLS estimates with three endogenous regressors and four excluded instruments. Suppose we are in-
terested in the return to experience, which depends on the level of experience. The estimated return
at experience= 10 is 0.047−0.032×2×10/100 = 0.041 and its standard error is 0.003. This implies a 4%
increase in wages per year of experience and is precisely estimated. Or suppose we are interested in the
level of experience at which the function maximizes. The estimate is 50× 0.047/0.032 = 73. This has
a standard error of 249. The large standard error implies that the estimate (73 years of experience) is
without precision and is thus uninformative.

12.21 Hypothesis Tests

As in the previous section, for a given function r
(
β
)

: Rk →Θ⊂ Rq we define the parameter θ = r
(
β
)

and consider tests of hypotheses of the form H0 : θ = θ0 against H1 : θ 6= θ0. The Wald statistic for H0 is

W = n
(
θ̂−θ0

)′
V̂

−1
θ̂

(
θ̂−θ0

)
.
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From Theorem 12.5 we deduce that W is asymptotically chi-square distributed. Let Gq (u) denote the χ2
q

distribution function.

Theorem 12.6 Under Assumption 12.2, Assumption 7.3, and H0, then as n →
∞, W −→

d
χ2

q . For c satisfying α = 1−Gq (c), P [W > c |H0] −→ α so the test

“Reject H0 if W > c” has asymptotic size α.

In linear regression we often report the F version of the Wald statistic (by dividing by degrees of
freedom) and use the F distribution for inference as this is justified in the normal sampling model. For
2SLS estimation, however, this is not done as there is no finite sample F justification for the F version of
the Wald statistic.

To illustrate, once again let’s take the parameter estimates from the fifth column of Table 12.1 and
again consider the return to experience which is determined by the coefficients on experience and expe-
rience2/100. Neither coefficient is statisticially significant at the 5% level and it is unclear if the overall
effect is statistically significant. We can assess this by testing the joint hypothesis that both coefficients
are zero. The Wald statistic for this hypothesis is W = 244 which is highly significant with an asymptotic
p-value of 0.0000. Thus by examining the joint test in contrast to the individual tests is quite clear that
experience has a non-zero effect.

12.22 Finite Sample Theory

In Chapter 5 we reviewed the rich exact distribution available for the linear regression model under
the assumption of normal innovations. There is a similarly rich literature in econometrics for IV, 2SLS
and LIML estimators. An excellent review of the theory, mostly developed in the 1970s and early 1980s,
is provided by Peter Phillips (1983).

This theory was developed under the assumption that the structural error vector e and reduced form
error u2 are multivariate normally distributed. Even though the errors are normal, IV-type estimators
are nonlinear functions of these errors and are thus non-normally distributed. Formulae for the exact
distributions have been derived but are unfortunately functions of model parameters and hence are not
directly useful for finite sample inference.

One important implication of this literature is that even in this optimal context of exact normal inno-
vations the finite sample distributions of the IV estimators are non-normal and the finite sample distri-
butions of test statistics are not chi-squared. The normal and chi-squared approximations hold asymp-
totically but there is no reason to expect these approximations to be accurate in finite samples.

A second important result is that under the assumption of normal errors most of the estimators do
not have finite moments in any finite sample. A clean statement concerning the existence of moments
for the 2SLS estimator was obtained by Kinal (1980) for the case of joint normality. Let β̂2sls,2 be the 2SLS
estimators of the coefficients on the endogeneous regressors.

Theorem 12.7 If (Y , X , Z ) are jointly normal, then for any r , E
∥∥β̂2sls,2

∥∥r <∞ if
and only if r < `2 −k2 +1.
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This result states that in the just-identified case the IV estimator does not have any finite order inte-
ger moments. In the over-identified case the number of finite moments corresponds to the number of
overidentifying restrictions (`2−k2). Thus if there is one over-identifying restriction 2SLS has a finite ex-
pectation and if there are two over-identifying restrictions then the 2SLS estimator has a finite variance.

The LIML estimator has a more severe moment problem as it has no finite integer moments (Mari-
ano, 1982) regardless of the number of over-identifying restrictions. Due to this lack of moments Fuller
(1977) proposed the following modification of LIML. His estimator is

β̂Fuller =
(

X ′ (I n −K M Z ) X
)−1 (

X ′ (I n −K M Z )Y 1
)

K = κ̂− C

n −k

for some C ≥ 1. Fuller showed that his estimator has all moments finite under suitable conditions.
Hausman, Newey, Woutersen, Chao and Swanson (2012) propose an estimator they call HFUL which

combines the ideas of JIVE and Fuller which has excellent finite sample properties.

12.23 Bootstrap for 2SLS

The standard bootstrap algorithm for IV, 2SLS, and GMM generates bootstrap samples by sampling
the triplets (Y ∗

1i , X ∗
i , Z∗

i ) independently and with replacement from the original sample {(Y1i , Xi , Zi ) : i =
1, ...,n}. Sampling n such observations and stacking into observation matrices (Y ∗

1 , X ∗, Z ∗), the boot-
strap 2SLS estimator is

β̂∗
2sls =

(
X ∗′Z ∗ (

Z ∗′Z ∗)−1 Z ∗′X ∗
)−1

X ∗′Z ∗ (
Z ∗′Z ∗)−1 Z ∗′Y ∗

1 .

This is repeated B times to create a sample of B bootstrap draws. Given these draws bootstrap statistics
can be calculated. This includes the bootstrap estimate of variance, standard errors, and confidence
intervals, including percentile, BC percentile, BCa and percentile-t.

We now show that the bootstrap estimator has the same asymptotic distribution as the sample esti-
mator. For overidentified cases this demonstration requires a bit of extra care. This was first shown by
Hahn (1996).

The sample observations satisfy the model Y1 = X ′β+ e with E [Z e] = 0. The true value of β in the
population can be written as

β=
(
E
[

X Z ′]E[
Z Z ′]−1

E
[

Z X ′])−1
E
[

X Z ′]E[
Z Z ′]−1

E [Z Y1] .

The true value in the bootstrap universe is obtained by replacing the population moments by the sample
moments, which equals the 2SLS estimator(

E∗
[

X ∗Z∗′]E∗ [
Z∗Z∗′]−1

E∗
[

Z∗X ∗′])−1
E∗

[
X ∗Z∗′]E∗ [

Z∗Z∗′]−1
E∗

[
Z∗Y ∗

1

]
=

((
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′X

))−1 (
1

n
X ′Z

)(
1

n
Z ′Z

)−1 [
1

n
Z ′Y 1

]
= β̂2sls.

The bootstrap observations thus satisfy the equation Y ∗
1i = X ∗′

i β̂2sls + e∗i . In matrix notation for the
sample this is

Y ∗
1 = X ∗′β̂2sls +e∗. (12.43)
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Given a bootstrap triple (Y ∗
1i , X ∗

i , Z∗
i ) = (Y1 j , X j , Z j ) for some observation j the true bootstrap error is

e∗i = Y1 j −X ′
j β̂2sls = ê j .

It follows that
E∗

[
Z∗e∗

]= n−1Z ′ê. (12.44)

This is generally not equal to zero in the over-identified case.
This an an important complication. In over-identified models the true observations satisfy the pop-

ulation condition E [Z e] = 0 but in the bootstrap sample E∗ [Z∗e∗] 6= 0. This means that to apply the
central limit theorem to the bootstrap estimator we first have to recenter the moment condition. That is,
(12.44) and the bootstrap CLT imply

1p
n

(
Z ∗′e∗−Z ′ê

)= 1p
n

n∑
i=1

(
Z∗

i e∗i −E∗ [
Z∗e∗

])−→
d∗ N(0,Ω) (12.45)

where
Ω= E[

Z Z ′e2] .

Using (12.43) we can normalize the bootstrap estimator as

p
n

(
β̂
∗
2sls − β̂2sls

)
=p

n
(

X ∗′Z ∗ (
Z ∗′Z ∗)−1 Z ∗′X ∗

)−1
X ∗′Z ∗ (

Z ∗′Z ∗)−1 Z ∗′e∗

=
((

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1 (
1

n
Z ∗′X ∗

))−1

×
(

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1 1p
n

(
Z ∗′e∗−Z ′ê

)
(12.46)

+
((

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1 (
1

n
Z ∗′X ∗

))−1

×
(

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1 (
1p
n

Z ′ê
)

. (12.47)

Using the bootstrap WLLN,

1

n
X ∗′Z ∗ = 1

n
X ′Z +op (1)

1

n
Z ∗′Z ∗ = 1

n
Z ′Z +op (1).

This implies (12.47) is equal to

p
n

(
X ′Z

(
Z ′Z

)−1 (
Z ′X

))−1
X ′Z

(
Z ′Z

)−1 Z ′ê +op (1) = 0+op (1).

The equality holds because the 2SLS first-order condition implies X ′Z
(

Z ′Z
)−1 Z ′ê = 0. Also, combined

with (12.45) we see that (12.46) converges in bootstrap distribution to(
Q X Z Q−1

Z Z Q Z X
)−1

Q X Z Q−1
Z Z N(0,Ω) = N

(
0,V β

)
where V β is the 2SLS asymptotic variance from Theorem 12.2. This is the asymptotic distribution ofp

n
(
β̂∗

2sls − β̂2sls
)
.

By standard calculations we can also show that bootstrap t-ratios are asymptotically normal.
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Theorem 12.8 Under Assumption 12.2, as n →∞
p

n
(
β̂∗

2sls − β̂2sls
)−→

d∗ N
(
0,V β

)
where V β is the 2SLS asymptotic variance from Theorem 12.2. Furthermore,

T ∗ =
p

n
(
β̂∗

2sls − β̂2sls
)

s
(
β̂∗

2sls

) −→
d∗ N(0,1) .

This shows that percentile-type and percentile-t confidence intervals are asymptotically valid.
One might expect that the asymptotic refinement arguments extend to the BCa and percentile-t

methods but this does not appear to be the case. While
p

n
(
β̂∗

2sls − β̂2sls
)

and
p

n
(
β̂2sls −β

)
have the

same asymptotic distribution they differ in finite samples by an Op
(
n−1/2

)
term. This means that they

have distinct Edgeworth expansions. Consequently, unadjusted bootstrap methods will not achieve an
asymptotic refinement.

An alternative suggested by Hall and Horowitz (1996) is to recenter the bootstrap 2SLS estimator so
that it satisfies the correct orthogonality condition. Define

β̂∗∗
2sls =

(
X ∗′Z ∗ (

Z ∗′Z ∗)−1 Z ∗′X ∗
)−1

X ∗′Z ∗ (
Z ∗′Z ∗)−1 (

Z ∗′Y ∗
1 −Z ′ê

)
.

We can see that

p
n

(
β̂∗∗

2sls − β̂2sls
)= (

1

n
X ∗′Z ∗

(
1

n
Z ∗′Z ∗

)−1 1

n
Z ∗′X ∗

)−1

×
(

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1
(

1p
n

n∑
i=1

(
Z∗

i e∗i −E∗ [
Z∗e∗

]))

which converges to the N
(
0,V β

)
distribution without special handling. Hall and Horowitz (1996) show

that percentile-t methods applied to β̂∗∗
2sls achieve an asymptotic refinement and are thus preferred to

the unadjusted bootstrap estimator.
This recentered estimator, however, is not the standard implementation of the bootstrap for 2SLS as

used in empirical practice.

12.24 The Peril of Bootstrap 2SLS Standard Errors

It is tempting to use the bootstrap algorithm to estimate variance matrices and standard errors for the
2SLS estimator. In fact this is one of the most common uses of bootstrap methods in current econometric
practice. Unfortunately this is an unjustified and ill-conceived idea and should not be done. In finite
samples the 2SLS estimator may not have a finite second moment, meaning that bootstrap variance
estimates are unstable and unreliable.

Theorem 12.7 shows that under joint normality the 2SLS estimator will have a finite variance if and
only if the number of overidentifying restrictions is two or larger. Thus for just-identified IV, and 2SLS
with one degree of overidentification, the finite sample variance is infinite. The bootstrap will be at-
tempting to estimate this value – infinity – and will yield nonsensical answers. When the observations
are not jointly normal there is no finite sample theory (so it is possible that the finite sample variance is
actually finite) but this is unknown and unverifiable.
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In overidentified settings when the number of overidentifying restrictions is two or larger the boot-
strap can be applied for standard error estimation. However this is not the most common application of
IV methods in econometric practice and thus should be viewed as the exception rather than the norm.

To understand what is going on consider the simplest case of a just-identified model with a single
endogenous regressor and no included exogenous regressors. In this case the estimator can be written
as a ratio of means

β̂iv −β=
∑n

i=1 Zi ei∑n
i=1 Zi Xi

.

Under joint normality of (e, X ) this has a Cauchy-like distribution which does not possess any finite in-
teger moments. The trouble is that the denominator can be either positive or negative, and arbitrarily
close to zero. This means that the ratio can take arbitrarily large values.

To illustrate let us return to the basic Card IV wage regression from column 2 of Table 12.1 which
uses college as an instrument for education. We estimate this equation for the subsample of Black men
which has n = 703 observations, and focus on the coefficient for the return to education. The coefficient
estimate is reported in Table 12.3, along with asymptotic, jackknife, and two bootstrap standard errors
each calculated with 10,000 bootstrap replications.

Table 12.3: Instrumental Variable Return to Education for Black Men

Estimate 0.11
Asymptotic s.e. (0.11)
Jackknife s.e. (0.11)
Bootstrap s.e. (standard) (1.42)
Bootstrap s.e. (repeat) (4.79)

The bootstrap standard errors are an order of magnitude larger than the asymptotic standard errors,
and vary substantially across the bootstrap runs despite using 10,000 bootstrap replications. This indi-
cates moment failure and unreliability of the bootstrap standard errors.

This is a strong message that bootstrap standard errors should not be computed for IV estimators.
Instead, report percentile-type confidence intervals.

12.25 Clustered Dependence

In Section 4.21 we introduced clustered dependence. We can also use the methods of clustered de-
pendence for 2SLS estimation. Recall, the g th cluster has the observations Y g = (Y1g , ...,Yng g )′, X g =
(X1g , ..., Xng g )′, and Z g = (Z1g , ..., Zng g )′. The structural equation for the g th cluster can be written as the
matrix system Y g = X gβ+eg . Using this notation the centered 2SLS estimator can be written as

β̂2sls −β=
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′e

=
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1

(
G∑

g=1
Z ′

g eg

)
.

The cluster-robust covariance matrix estimator for β̂2sls thus takes the form

V̂ β =
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Ŝ
(

Z ′Z
)−1 Z ′X

(
X ′Z

(
Z ′Z

)−1 Z ′X
)−1



CHAPTER 12. INSTRUMENTAL VARIABLES 364

with

Ŝ =
G∑

g=1
Z ′

g êg ê ′
g Z g

and the clustered residuals êg = Y g −X g β̂2sls.
The difference between the heteroskedasticity-robust estimator and the cluster-robust estimator is

the covariance estimator Ŝ.

12.26 Generated Regressors

The “two-stage” form of the 2SLS estimator is an example of what is called “estimation with generated
regressors”. We say a regressor is a generated if it is an estimate of an idealized regressor or if it is a
function of estimated parameters. Typically, a generated regressor Ŵ is an estimate of an unobserved
ideal regressor W . As an estimate, Ŵi is a function of the full sample not just observation i . Hence it is not
“i.i.d.” as it is dependent across observations which invalidates the conventional regression assumptions.
Consequently, the sampling distribution of regression estimates is affected. Unless this is incorporated
into our inference methods, covariance matrix estimates and standard errors will be incorrect.

The econometric theory of generated regressors was developed by Pagan (1984) for linear models and
extended to nonlinear models and more general two-step estimators by Pagan (1986). Independently,
similar results were obtained by Murphy and Topel (1985). Here we focus on the linear model:

Y =W ′β+ v (12.48)

W = A′Z
E [Z v] = 0.

The observables are (Y , Z ). We also have an estimate Â of A.
Given Â we construct the estimate Ŵi = Â

′
Zi of Wi , replace Wi in (12.48) with Ŵi , and then estimate

β by least squares, resulting in the estimator

β̂=
(

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
n∑

i=1
Ŵi Yi

)
. (12.49)

The regressors Ŵi are called generated regressors. The properties of β̂ are different than least squares
with i.i.d. observations because the generated regressors are themselves estimates.

This framework includes 2SLS as well as other common estimators. The 2SLS model can be written
as (12.48) by looking at the reduced form equation (12.13), with W = Γ′Z , A = Γ, and Â = Γ̂.

The examples which motivated Pagan (1984) and Murphy and Topel (1985) emerged from the macroe-
conomics literature, in particular the work of Barro (1977) which examined the impact of inflation expec-
tations and expectation errors on economic output. Let π denote realized inflation and Z be variables
available to economic agents. A model of inflation expectations sets W = E [π | Z ] = γ′Z and a model of
expectation error sets W = π−E [π | Z ] = π−γ′Z . Since expectations and errors are not observed they
are replaced in applications with the fitted values Ŵi = γ̂′Zi and residuals Ŵi = πi − γ̂′Zi where γ̂ is the
coefficient from a regression of π on Z .

The generated regressor framework includes all of these examples.
The goal is to obtain a distributional approximation for β̂ in order to construct standard errors, con-

fidence intervals, and tests. Start by substituting equation (12.48) into (12.49). We obtain

β̂=
(

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
n∑

i=1
Ŵi

(
W ′

i β+ vi
))

.
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Next, substitute W ′
i β= Ŵ ′

i β+ (
Wi −Ŵi

)′
β. We obtain

β̂−β=
(

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
n∑

i=1
Ŵi

((
Wi −Ŵi

)′
β+ vi

))
. (12.50)

Effectively, this shows that the distribution of β̂−β has two random components, one due to the con-
ventional regression component and the second due to the generated regressor. Conventional variance
estimators do not address this second component and thus will be biased.

Interestingly, the distribution in (12.50) dramatically simplifies in the special case that the “gener-
ated regressor term”

(
Wi −Ŵi

)′
β disappears. This occurs when the slope coefficients on the generated

regressors are zero. To be specific, partition Wi = (W1i ,W2i ), Ŵi =
(
W1i ,Ŵ2i

)
, and β = (

β1,β2
)

so that

W1i are the conventional observed regressors and Ŵ2i are the generated regressors. Then
(
Wi −Ŵi

)′
β=(

W2i −Ŵ2i
)′
β2. Thus if β2 = 0 this term disappears. In this case (12.50) equals

β̂− β̂=
(

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
n∑

i=1
Ŵi vi

)
.

This is a dramatic simplification.
Furthermore, since Ŵi = Â

′
Zi we can write the estimator as a function of sample moments:

p
n

(
β̂−β)= (

Â
′
(

1

n

n∑
i=1

Zi Z ′
i

)
Â

)−1

Â
′
(

1p
n

n∑
i=1

Zi vi

)
.

If Â −→
p

A we find from standard manipulations that
p

n
(
β̂−β)−→

d
N

(
0,V β

)
where

V β = (
A′E

[
Z Z ′] A

)−1 (
A′E

[
Z Z ′v2] A

)(
A′E

[
Z Z ′] A

)−1 . (12.51)

The conventional asymptotic covariance matrix estimator for β̂ takes the form

V̂ β =
(

1

n

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
1

n

n∑
i=1

Ŵi Ŵ ′
i v̂2

i

)(
1

n

n∑
i=1

Ŵi Ŵ ′
i

)−1

(12.52)

where v̂i = Yi −Ŵ ′
i β̂. Under the given assumptions, V̂ β −→

p
V β. Thus inference using V̂ β is asymptot-

ically valid. This is useful when we are interested in tests of β2 = 0. Often this is of major interest in
applications.

To test H0 : β2 = 0 we partition β̂= (
β̂1, β̂2

)
and construct a conventional Wald statistic

W = nβ̂′
2

([
V̂ β

]
22

)−1
β̂2.

Theorem 12.9 Take model (12.48) with E
[
Y 4

]<∞, E‖Z‖4 <∞, A′E
[

Z Z ′] A >
0, Â −→

p
A, and Ŵi =

(
W1i ,Ŵ2i

)
. Under H0 : β2 = 0, as n →∞,

p
n

(
β̂−β) −→

d

N
(
0,V β

)
where V β is given in (12.51). For V̂ β given in (12.52), V̂ β −→

p
V β.

Furthermore, W −→
d

χ2
q where q = dim(β2). For c satisfying α = 1 −Gq (c),

P [W > c |H0] →α, so the test “Reject H0 if W > c” has asymptotic size α.



CHAPTER 12. INSTRUMENTAL VARIABLES 366

In the special case that Â = A (X , Z ) and v | X , Z ∼ N
(
0,σ2

)
there is a finite sample version of the pre-

vious result. Let W 0 be the Wald statistic constructed with a homoskedastic covariance matrix estimator,
and let

F =W /q (12.53)

be the the F statistic, where q = dim(β2).

Theorem 12.10 Take model (12.48) with Â = A (X , Z ), v | X , Z ∼ N
(
0,σ2

)
and

Ŵ = (
W1,Ŵ2

)
. Under H0 : β2 = 0, t-statistics have exact N(0,1) distributions,

and the F statistic (12.53) has an exact Fq,n−k distribution where q = dim(β2)
and k = dim(β).

To summarize, in the model Y = W ′
1β1 +W ′

2β2 + v where W2 is not observed but replaced with an
estimate Ŵ2, conventional significance tests for H0 : β2 = 0 are asymptotically valid without adjustment.

While this theory allows tests of H0 : β2 = 0 it unfortunately does not justify conventional standard
errors or confidence intervals. For this, we need to work out the distribution without imposing the sim-
plification β2 = 0. This often needs to be worked out case-by-case or by using methods based on the
generalized method of moments to be introduced in Chapter 13. However, in one important set of ex-
amples it is straightforward to work out the asymptotic distribution.

For the remainder of this section we examine the setting where the estimators Â take a least squares
form so for some X can be written as Â = (

Z ′Z
)−1 (

Z ′X
)
. Such estimators correspond to the multivariate

projection model

X = A′Z +u (12.54)

E
[

Z u′]= 0.

This class of estimators includes 2SLS and the expectation model described above. We can write the
matrix of generated regressors as Ŵ = Z Â and then (12.50) as

β̂−β=
(
Ŵ

′
Ŵ

)−1 (
Ŵ

′ ((
W −Ŵ

)
β+v

))
=

(
Â
′
Z ′Z Â

)−1 (
Â
′
Z ′

(
−Z

(
Z ′Z

)−1 (
Z ′U

)
β+v

))
=

(
Â
′
Z ′Z Â

)−1 (
Â
′
Z ′ (−Uβ+v

))
=

(
Â
′
Z ′Z Â

)−1 (
Â
′
Z ′e

)
where

e = v −u′β= Y −X ′β. (12.55)

This estimator has the asymptotic distribution
p

n
(
β̂−β)−→

d
N

(
0,V β

)
where

V β =
(

A′E
[

Z Z ′] A
)−1 (

A′E
[

Z Z ′e2] A
)(

A′E
[

Z Z ′] A
)−1 . (12.56)

Under conditional homoskedasticity the covariance matrix simplifies to

V β = (
A′E

[
Z Z ′] A

)−1
E
[
e2] .
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An appropriate estimator of V β is

V̂ β =
(

1

n
Ŵ

′
Ŵ

)−1
(

1

n

n∑
i=1

Ŵi Ŵ ′
i ê2

i

)(
1

n
Ŵ

′
Ŵ

)−1

(12.57)

êi = Yi −X ′
i β̂.

Under the assumption of conditional homoskedasticity this can be simplified as usual.
This appears to be the usual covariance matrix estimator, but it is not because the least squares resid-

uals v̂i = Yi −Ŵ ′
i β̂ have been replaced with êi . This is exactly the substitution made by the 2SLS covari-

ance matrix formula. Indeed, the covariance matrix estimator V̂ β precisely equals (12.40).

Theorem 12.11 Take model (12.48) and (12.54) with E
[
Y 4

] < ∞, E‖Z‖4 < ∞,

A′E
[

Z Z ′] A > 0, and Â = (
Z ′Z

)−1 (
Z ′X

)
. As n → ∞,

p
n

(
β̂−β) −→

d
N

(
0,V β

)
where V β is given in (12.56) with e defined in (12.55). For V̂ β given in (12.57),
V̂ β −→p V β.

Since the parameter estimators are asymptotically normal and the covariance matrix is consistently
estimated, standard errors and test statistics constructed from V̂ β are asymptotically valid with conven-
tional interpretations.

We now summarize the results of this section. In general, care needs to be exercised when estimat-
ing models with generated regressors. As a general rule, generated regressors and two-step estimation
affect sampling distributions and variance matrices. An important simplication occurs for tests that the
generated regressors have zero slopes. In this case conventional tests have conventional distributions,
both asymptotically and in finite samples. Another important special case occurs when the generated
regressors are least squares fitted values. In this case the asymptotic distribution takes a conventional
form but the conventional residual needs to be replaced by one constructed with the forecasted variable.
With this one modification asymptotic inference using the generated regressors is conventional.

12.27 Regression with Expectation Errors

In this section we examine a generated regressor model which includes expectation errors in the
regression. This is an important class of generated regressor models and is relatively straightforward to
characterize. The model is

Y = X ′β+u′α+ν
W = A′Z
X =W +u

E [Zν] = 0

E [uν] = 0

E
[

Z u′]= 0.

The observables are (Y , X , Z ). This model states that W is the expectation of X (or more generally, the
projection of X on Z ) and u is its expectation error. The model allows for exogenous regressors as in the
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standard IV model if they are listed in W , X , and Z . This model is used, for example, to decompose the
effect of expectations from expectation errors. In some cases it is desired to include only the expectation
error u, not the expectation W . This does not change the results described here.

The model is estimated as follows. First, A is estimated by multivariate least squares of X on Z ,
Â = (

Z ′Z
)−1 (

Z ′X
)
, which yields as by-products the fitted values Ŵi = Â

′
Zi and residuals ûi = X̂i −Ŵi .

Second, the coefficients are estimated by least squares of Y on the fitted values Ŵ and residuals û

Yi = Ŵ ′
i β̂+ û′

i α̂+ ν̂i .

We now examine the asymptotic distributions of these estimators.
By the first-step regression Z ′Û = 0, Ŵ

′
Û = 0 and W ′Û = 0. This means that β̂ and α̂ can be computed

separately. Notice that

β̂=
(
Ŵ

′
Ŵ

)−1
Ŵ

′
Y

and
Y = Ŵβ+Uα+ (

W −Ŵ
)
β+ν.

Substituting, using Ŵ
′
Û = 0 and W −Ŵ =−Z

(
Z ′Z

)−1 Z ′U we find

β̂−β=
(
Ŵ

′
Ŵ

)−1
Ŵ

′ (
Uα+ (

W −Ŵ
)
β+ν)

=
(

Â
′
Z ′Z Â

)−1
Â
′
Z ′ (Uα−Uβ+ν)

=
(

Â
′
Z ′Z Â

)−1
Â
′
Z ′e

where
ei = vi +u′

i

(
α−β)= Yi −X ′

iβ.

We also find

α̂=
(
Û

′
Û

)−1
Û

′
Y .

Since Û
′
W = 0, U −Û = Z

(
Z ′Z

)−1 Z ′U and Û
′
Z = 0 then

α̂−α=
(
Û

′
Û

)−1
Û

′ (
Wβ+ (

U −Û
)
α+ν)

=
(
Û

′
Û

)−1
Û

′
ν.

Together, we establish the following distributional result.
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Theorem 12.12 For the model and estimators described in this section, with
E
[
Y 4

]<∞, E‖Z‖4 <∞, E‖X ‖4 <∞, A′E
[

Z Z ′] A > 0, and E
[
uu′]> 0, as n →∞

p
n

(
β̂−β
α̂−α

)
−→

d
N(0,V ) (12.58)

where

V =
(

V ββ V βα

V αβ V αα

)
and

V ββ =
(

A′E
[

Z Z ′] A
)−1 (

A′E
[

Z Z ′e2] A
)(

A′E
[

Z Z ′] A
)−1

V αβ =
(
E
[
uu′])−1 (

E
[
uZ ′eν

]
A

)(
A′E

[
Z Z ′] A

)−1

V αα = (
E
[
uu′])−1

E
[
uu′ν2](

E
[
uu′])−1 .

The asymptotic covariance matrix is estimated by

V̂ ββ =
(

1

n
Ŵ

′
Ŵ

)−1
(

1

n

n∑
i=1

Ŵi Ŵ ′
i ê2

i

)(
1

n
Ŵ

′
Ŵ

)−1

V̂ αβ =
(

1

n
Û

′
Û

)−1
(

1

n

n∑
i=1

ûi Ŵ ′
i êi ν̂i

)(
1

n
Ŵ

′
Ŵ

)−1

V̂ αα =
(

1

n
Û

′
Û

)−1
(

1

n

n∑
i=1

ÛiÛ ′
i ν̂

2
i

)(
1

n
Û

′
Û

)−1

where

Ŵi = Â
′
Zi

ûi = X̂i −Ŵi

êi = Yi −X ′
i β̂

ν̂i = Yi −Ŵ ′
i β̂− û′

i α̂.

Under conditional homoskedasticity, specifically

E

[(
e2

i eiνi

eiνi v2
i

)∣∣∣∣ Zi

]
=C

then V αβ = 0 and the coefficient estimates β̂ and α̂ are asymptotically independent. The variance com-
ponents also simplify to

V ββ =
(

A′E
[

Z Z ′] A
)−1

E
[
e2

i

]
V αα = (

E
[
uu′])−1

E
[
ν2] .

In this case we have the covariance matrix estimators

V̂
0
ββ =

(
1

n
Ŵ

′
Ŵ

)−1
(

1

n

n∑
i=1

ê2
i

)

V̂
0
αα =

(
1

n
Û

′
Û

)−1
(

1

n

n∑
i=1

ν̂2
i

)
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and V̂
0
αβ = 0.

12.28 Control Function Regression

In this section we present an alternative way of computing the 2SLS estimator by least squares. It is
useful in nonlinear contexts, and also in the linear model to construct tests for endogeneity.

The structural and reduced form equations for the standard IV model are

Y = X ′
1β1 +X ′

2β2 +e

X2 = Γ′12Z1 +Γ′22Z2 +u2.

Since the instrumental variable assumption specifies that E [Z e] = 0, X2 is endogenous (correlated with
e) if u2 and e are correlated. We can therefore consider the linear projection of e on u2

e = u′
2α+ν

α= (
E
[
u2u′

2

])−1
E [u2e]

E [u2ν] = 0.

Substituting this into the structural form equation we find

Y = X ′
1β1 +X ′

2β2 +u′
2α+ν (12.59)

E [X1ν] = 0

E [X2ν] = 0

E [u2ν] = 0.

Notice that X2 is uncorrelated with ν. This is because X2 is correlated with e only through u2, and ν is
the error after e has been projected orthogonal to u2.

If u2 were observed we could then estimate (12.59) by least squares. Since it is not observed we
estimate it by the reduced-form residual û2i = X2i − Γ̂′12Z1i − Γ̂′22Z2i . Then the coefficients (β1,β2,α) can
be estimated by least squares of Y on (X1, X2, û2). We can write this as

Yi = X ′
i β̂+ û′

2i α̂+ ν̂i (12.60)

or in matrix notation as
Y = X β̂+Û 2α̂+ ν̂.

This turns out to be an alternative algebraic expression for the 2SLS estimator.
Indeed, we now show that β̂= β̂2sls. First, note that the reduced form residual can be written as

Û 2 = (I n −P Z ) X 2

where P Z is defined in (12.30). By the FWL representation

β̂=
(

X̃
′
X̃

)−1 (
X̃

′
Y

)
(12.61)

where X̃ = [
X̃ 1, X̃ 2

]
with

X̃ 1 = X 1 −Û 2

(
Û

′
2Û 2

)−1
Û

′
2X 1 = X 1
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(since Û
′
2X 1 = 0) and

X̃ 2 = X 2 −Û 2

(
Û

′
2Û 2

)−1
Û

′
2X 2

= X 2 −Û 2
(

X ′
2 (I n −P Z ) X 2

)−1 X ′
2 (I n −P Z ) X 2

= X 2 −Û 2

= P Z X 2.

Thus X̃ = [X 1,P Z X 2] = P Z X . Substituted into (12.61) we find

β̂= (
X ′P Z X

)−1 (
X ′P Z Y

)= β̂2sls

which is (12.31) as claimed.
Again, what we have found is that OLS estimation of equation (12.60) yields algebraically the 2SLS

estimator β̂2sls.
We now consider the distribution of the control function estimator

(
β̂, α̂

)
. It is a generated regression

model, and in fact is covered by the model examined in Section 12.27 after a slight reparametrization.
Let W = Γ′Z . Note u = X −W . Then the main equation (12.59) can be written as Y =W ′β+u′

2γ+νwhere
γ=α+β2. This is the model in Section 12.27.

Set γ̂= α̂+ β̂2. It follows from (12.58) that as n →∞ we have the joint distribution

p
n

(
β̂2 −β2

γ̂−γ
)
−→

d
N(0,V )

where

V =
(

V 22 V 2γ

V γ2 V γγ

)

V 22 =
[(
Γ
′
E
[

Z Z ′]Γ)−1
Γ
′
E
[

Z Z ′e2]Γ(
Γ
′
E
[

Z Z ′]Γ)−1
]

22

V γ2 =
[(
E
[
u2u′

2

])−1
E
[
uZ ′eν

]
Γ

(
Γ
′
E
[

Z Z ′]Γ)−1
]
·2

V γγ =
(
E
[
u2u′

2

])−1
E
[
u2u′

2ν
2](

E
[
u2u′

2

])−1

e = Y −X ′β.

The asymptotic distribution of γ̂= α̂− β̂2 can be deduced.

Theorem 12.13 If E
[
Y 4

] < ∞, E‖Z‖4 < ∞, E‖X ‖4 < ∞, A′E
[

Z Z ′] A > 0, and
E
[
uu′]> 0, as n →∞ p

n (α̂−α) −→
d

N(0,V α)

where
V α =V 22 +V γγ−V γ2 −V ′

γ2.
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Under conditional homoskedasticity we have the important simplifications

V 22 =
[(
Γ
′
E
[

Z Z ′]Γ)−1
]

22
E
[
e2]

V γγ =
(
E
[
u2u′

2

])−1
E
[
ν2]

V γ2 = 0

V α =V 22 +V γγ.

An estimator for V α in the general case is

V̂ α = V̂ 22 + V̂ γγ− V̂ γ2 − V̂
′
γ2 (12.62)

where

V̂ 22 =
[

1

n

(
X ′P Z X

)−1 X ′Z
(

Z ′Z
)−1

(
n∑

i=1
Zi Z ′

i ê2
i

)(
Z ′Z

)−1 Z ′X
(

X ′P Z X
)−1

]
22

V̂ γ2 =
[

1

n

(
Û

′
Û

)−1
(

n∑
i=1

ûi Ŵ ′
i êi ν̂i

)(
X ′P Z X

)−1

]
·2

êi = Yi −X ′
i β̂

ν̂i = Yi −X ′
i β̂− û′

2i γ̂.

Under the assumption of conditional homoskedasticity we have the estimator

V̂
0
α = V̂

0
ββ+ V̂

0
γγ

V̂ ββ =
[(

X ′P Z X
)−1

]
22

(
n∑

i=1
ê2

i

)

V̂ γγ =
(
Û

′
Û

)−1
(

n∑
i=1

ν̂2
i

)
.

12.29 Endogeneity Tests

The 2SLS estimator allows the regressor X2 to be endogenous, meaning that X2 is correlated with
the structural error e. If this correlation is zero then X2 is exogenous and the structural equation can be
estimated by least squares. This is a testable restriction. Effectively, the null hypothesis is

H0 : E [X2e] = 0

with the alternative
H1 : E [X2e] 6= 0.

The maintained hypothesis is E [Z e] = 0. Since X1 is a component of Z this implies E [X1e] = 0. Conse-
quently we could alternatively write the null as H0 : E [X e] = 0 (and some authors do so).

Recall the control function regression (12.59)

Y = X ′
1β1 +X ′

2β2 +u′
2α+ν

α= (
E
[
u2u′

2

])−1
E [u2e] .
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Notice that E [X2e] = 0 if and only if E [u2e] = 0, so the hypothesis can be restated as H0 : α = 0 against
H1 :α 6= 0. Thus a natural test is based on the Wald statistic W forα= 0 in the control function regression
(12.28). Under Theorem 12.9, Theorem 12.10, and H0, W is asymptotically chi-square with k2 degrees
of freedom. In addition, under the normal regression assumption the F statistic has an exact F (k2,n −
k1 −2k2) distribution. We accept the null hypothesis that X2 is exogenous if W (or F) is smaller than the
critical value, and reject in favor of the hypothesis that X2 is endogenous if the statistic is larger than the
critical value.

Specifically, estimate the reduced form by least squares

X2i = Γ̂′12Z1i + Γ̂′22Z2i + û2i

to obtain the residuals. Then estimate the control function by least squares

Yi = X ′
i β̂+ û′

2i α̂+ ν̂i . (12.63)

Let W , W 0 and F =W 0/k2 denote the Wald, homoskedastic Wald, and F statistics for α= 0.

Theorem 12.14 UnderH0, W −→
d
χ2

k2
. Let c1−α solveP

[
χ2

k2
≤ c1−α

]
= 1−α. The

test “Reject H0 if W > c1−α” has asymptotic size α.

Theorem 12.15 Suppose e | X , Z ∼ N
(
0,σ2

)
. Under H0, F ∼ F (k2,n −k1 −2k2).

Let c1−α solve P [F (k2,n −k1 −2k2) ≤ c1−α] = 1−α. The test “Reject H0 if F >
c1−α” has exact size α.

Since in general we do not want to impose homoskedasticity these results suggest that the most ap-
propriate test is the Wald statistic constructed with the robust heteroskedastic covariance matrix. This
can be computed in Stata using the command estat endogenous after ivregress when the latter uses
a robust covariance option. Stata reports the Wald statistic in F form (and thus uses the F distribution
to calculate the p-value) as “Robust regression F”. Using the F rather than the χ2 is not formally justi-
fied but is a reasonable finite sample adjustment. If the command estat endogenous is applied after
ivregress without a robust covariance option Stata reports the F statistic as “Wu-Hausman F”.

There is an alternative (and traditional) way to derive a test for endogeneity. Under H0, both OLS
and 2SLS are consistent estimators. But under H1 they converge to different values. Thus the difference
between the OLS and 2SLS estimators is a valid test statistic for endogeneity. It also measures what
we often care most about – the impact of endogeneity on the parameter estimates. This literature was
developed under the assumption of conditional homoskedasticity (and it is important for these results)
so we assume this condition for the development of the statistic.

Let β̂ = (
β̂1, β̂2

)
be the OLS estimator and let β̃ = (

β̃1, β̃2
)

be the 2SLS estimator. Under H0 and ho-
moskedasticity the OLS estimator is Gauss-Markov efficient so by the Hausman equality

var
[
β̂2 − β̃2

]= var
[
β̃2

]−var
[
β̂2

]
=

((
X ′

2 (P Z −P 1) X 2
)−1 − (

X ′
2M 1X 2

)−1
)
σ2

huhua
Highlight
“Wu-Hausman F”
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where P Z = Z
(

Z ′Z
)−1 Z ′, P 1 = X 1

(
X ′

1X 1
)−1 X ′

1, and M 1 = I n −P 1. Thus a valid test statistic for H0 is

T =
(
β̂2 − β̃2

)′ ((
X ′

2 (P Z −P 1) X 2
)−1 − (

X ′
2M 1X 2

)−1
)−1 (

β̂2 − β̃2
)

σ̂2 (12.64)

for some estimator σ̂2 of σ2. Durbin (1954) first proposed T as a test for endogeneity in the context of
IV estimation setting σ̂2 to be the least squares estimator of σ2. Wu (1973) proposed T as a test for en-
dogeneity in the context of 2SLS estimation, considering a set of possible estimators σ̂2 including the
regression estimator from (12.63). Hausman (1978) proposed a version of T based on the full contrast
β̂− β̃, and observed that it equals the regression Wald statistic W 0 described earlier. In fact, when σ̂2 is
the regression estimator from (12.63) the statistic (12.64) algebraically equals both W 0 and the version of
(12.64) based on the full contrast β̂− β̃ . We show these equalities below. Thus these three approaches
yield exactly the same statistic except for possible differences regarding the choice of σ̂2. Since the re-
gression F test described earlier has an exact F distribution in the normal sampling model and thus
can exactly control test size, this is the preferred version of the test. The general class of tests are called
Durbin-Wu-Hausman tests, Wu-Hausman tests, or Hausman tests, depending on the author.

When k2 = 1 (there is one right-hand-side endogenous variable), which is quite common in applica-
tions, the endogeneity test can be equivalently expressed at the t-statistic for α̂ in the estimated control
function. Thus it is sufficient to estimate the control function regression and check the t-statistic for α̂.
If |α̂| > 2 then we can reject the hypothesis that X2 is exogenous for β.

We illustrate using the Card proximity example using the two instruments public and private. We first
estimate the reduced form for education, obtain the residual, and then estimate the control function
regression. The residual has a coefficient −0.088 with a standard error of 0.037 and a t-statistic of 2.4.
Since the latter exceeds the 5% critical value (its p-value is 0.017) we reject exogeneity. This means that
the 2SLS estimates are statistically different from the least squares estimates of the structural equation
and supports our decision to treat education as an endogenous variable. (Alternatively, the F statistic is
2.42 = 5.7 with the same p-value).

We now show the equality of the various statistics.
We first show that the statistic (12.64) is not altered if based on the full contrast β̂− β̃. Indeed, β̂1− β̃1

is a linear function of β̂2 − β̃2, so there is no extra information in the full contrast. To see this, observe
that given β̂2 we can solve by least squares to find

β̂1 =
(

X ′
1X 1

)−1 (
X ′

1

(
Y −X 2β̂2

))
and similarly

β̃1 =
(

X ′
1X 1

)−1 (
X ′

1

(
Y −P Z X 2β̃

))= (
X ′

1X 1
)−1 (

X ′
1

(
Y −X 2β̃

))
the second equality because P Z X 1 = X 1. Thus

β̂1 − β̃1 =
(

X ′
1X 1

)−1 X ′
1

(
Y −X 2β̂2

)− (
X ′

1X 1
)−1 X ′

1

(
Y −P Z X 2β̃

)
= (

X ′
1X 1

)−1 X ′
1X 2

(
β̃2 − β̂2

)
as claimed.

We next show that T in (12.64) equals the homoskedastic Wald statistic W 0 for α̂ from the regres-
sion (12.63). Consider the latter regression. Since X 2 is contained in X the coefficient estimate α̂ is
invariant to replacing Û 2 = X 2 − X̂ 2 with −X̂ 2 = −P Z X 2. By the FWL representation, setting M X =
I n −X

(
X ′X

)−1 X ′,

α̂=−
(

X̂
′
2M X X̂ 2

)−1
X̂

′
2M X Y =−(

X ′
2P Z M X P Z X 2

)−1 X ′
2P Z M X Y .

huhua
Highlight
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huhua
Highlight
regression



CHAPTER 12. INSTRUMENTAL VARIABLES 375

It follows that

W 0 = Y ′M X P Z X 2
(

X ′
2P Z M X P Z X 2

)−1 X ′
2P Z M X Y

σ̂2 .

Our goal is to show that T = W 0. Define X̃ 2 = (I n −P 1) X 2 so β̂2 =
(

X̃
′
2X̃ 2

)−1
X̃

′
2Y . Then using

(P Z −P 1) (I n −P 1) = (P Z −P 1) and defining Q = X̃ 2

(
X̃

′
2X̃ 2

)−1
X̃

′
2 we find

∆
def= (

X ′
2 (P Z −P 1) X 2

)(
β̃2 − β̂2

)
= X ′

2 (P Z −P 1)Y − (
X ′

2 (P Z −P 1) X 2
)(

X̃
′
2X̃ 2

)−1
X̃

′
2Y

= X ′
2 (P Z −P 1) (I n −Q)Y

= X ′
2 (P Z −P 1 −P Z Q)Y

= X ′
2P Z (I n −P 1 −Q)Y

= X ′
2P Z M X Y .

The third-to-last equality is P 1Q = 0 and the final uses M X = I n −P 1 −Q . We also calculate that

Q∗ def= (
X ′

2 (P Z −P 1) X 2
)((

X ′
2 (P Z −P 1) X 2

)−1 − (
X ′

2M 1X 2
)−1

)(
X ′

2 (P Z −P 1) X 2
)

= X ′
2 (P Z −P 1 − (P Z −P 1)Q (P Z −P 1)) X 2

= X ′
2

(
P Z −P 1 −P Z QP Z

)
X 2

= X ′
2P Z M X P Z X 2.

Thus

T = ∆
′Q∗−1∆

σ̂2

= Y ′M X P Z X 2
(

X ′
2P Z M X P Z X 2

)−1 X ′
2P Z M X Y

σ̂2

=W 0

as claimed.

12.30 Subset Endogeneity Tests

In some cases we may only wish to test the endogeneity of a subset of the variables. In the Card prox-
imity example we may wish test the exogeneity of education separately from experience and its square.
To execute a subset endogeneity test it is useful to partition the regressors into three groups so that the
structural model is

Y = X ′
1β1 +X ′

2β2 +X ′
3β3 +e

E [Z e] = 0.

As before, the instrument vector Z includes X1. The vector X3 is treated as endogenous and X2 is treated
as potentially endogenous. The hypothesis to test is that X2 is exogenous, or H0 : E [X2e] = 0 against
H1 : E [X2e] 6= 0.

Under homoskedasticity a straightfoward test can be constructed by the Durbin-Wu-Hausman prin-
ciple. Under H0 the appropriate estimator is 2SLS using the instruments (Z , X2). Let this estimator of β2
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be denoted β̂2. Under H1 the appropriate estimator is 2SLS using the smaller instrument set Z . Let this
estimator of β2 be denoted β̃2. A Durbin-Wu-Hausman statistic for H0 against H1 is

T = (
β̂2 − β̃2

)′ (
v̂ar

[
β̃2

]− v̂ar
[
β̂2

])−1 (
β̂2 − β̃2

)
.

The asymptotic distribution under H0 is χ2
k2

where k2 = dim(X2), so we reject the hypothesis that the

variables X2 are exogenous if T exceeds an upper critical value from the χ2
k2

distribution.
Instead of using the Wald statistic one could use the F version of the test by dividing by k2 and using

the F distribution for critical values. There is no finite sample justification for this modification, however,
since X3 is endogenous under the null hypothesis.

In Stata, the command estat endogenous (adding the variable name to specify which variable to
test for exogeneity) after ivregress without a robust covariance option reports the F version of this
statistic as “Wu-Hausman F”. For example, in the Card proximity example using the four instruments
public, private, age, and age2, if we estimate the equation by 2SLS with a non-robust covariance matrix
and then compute the endogeneity test for education we find F = 272 with a p-value of 0.0000, but if we
compute the test for experience and its square we find F = 2.98 with a p-value of 0.051. In this model,
the assumption of exogeneity with homogenous coefficients is rejected for education but the result for
experience is unclear.

A heteroskedasticity or cluster-robust test cannot be constructed easily by the Durbin-Wu-Hausman
approach since the covariance matrix does not take a simple form. To allow for non-homoskedastic
errors it is recommended to use GMM estimation. See Section 13.24.

12.31 OverIdentification Tests

When `> k the model is overidentified meaning that there are more moments than free parameters.
This is a restriction and is testable. Such tests are called overidentification tests.

The instrumental variables model specifies E [Z e] = 0. Equivalently, since e = Y −X ′β this is

E [Z Y ]−E[
Z X ′]β= 0.

This is an `×1 vector of restrictions on the moment matrices E [Z Y ] and E
[

Z X ′]. Yet since β is of dimen-
sion k which is less than ` it is not certain if indeed such a β exists.

To make things a bit more concrete, suppose there is a single endogenous regressor X2, no X1, and
two instruments Z1 and Z2. Then the model specifies that

E([Z1Y ] = E [Z1X2]β

and
E [Z2Y ] = E [Z2X2]β.

Thus β solves both equations. This is rather special.
Another way of thinking about this is we could solve for β using either one equation or the other.

In terms of estimation this is equivalent to estimating by IV using just the instrument Z1 or instead just
using the instrument Z2. These two estimators (in finite samples) are different. If the overidentification
hypothesis is correct both are estimating the same parameter and both are consistent for β. In contrast,
if the overidentification hypothesis is false then the two estimators will converge to different probability
limits and it is unclear if either probability limit is interesting.

For example, take the 2SLS estimates in the fourth column of Table 12.1 which use public and private
as instruments for education. Suppose we instead estimate by IV using just public as an instrument and
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then repeat using private. The IV coefficient for education in the first case is 0.16 and in the second case
0.27. These appear to be quite different. However, the second estimate has a large standard error (0.16)
so the difference may be sampling variation. An overidentification test addresses this question.

For a general overidentification test the null and alternative hypotheses are H0 : E [Z e] = 0 against
H1 : E [Z e] 6= 0. We will also add the conditional homoskedasticity assumption

E
[
e2 | Z

]=σ2. (12.65)

To avoid (12.65) it is best to take a GMM approach which we defer until Chapter 13.
To implement a test of H0 consider a linear regression of the error e on the instruments Z

e = Z ′α+ν (12.66)

withα= (
E
[

Z Z ′])−1
E [Z e]. We can rewriteH0 asα= 0. While e is not observed we can replace it with the

2SLS residual êi and estimateα by least squares regression, e.g. α̂= (
Z ′Z

)−1 Z ′ê. Sargan (1958) proposed
testing H0 via a score test, which equals

S = α̂′ (v̂ar[α̂])− α̂= ê ′Z
(

Z ′Z
)−1 Z ′ê

σ̂2 . (12.67)

where σ̂2 = 1
n ê ′ê. Basmann (1960) independently proposed a Wald statistic for H0, which is S with σ̂2

replaced with σ̃2 = n−1ν̂′ν̂ where ν̂= ê − Z α̂. By the equivalence of homoskedastic score and Wald tests
(see Section 9.16) Basmann’s statistic is a monotonic function of Sargan’s statistic and hence they yield
equivalent tests. Sargan’s version is more typically reported.

The Sargan test rejects H0 in favor of H1 if S > c for some critical value c. An asymptotic test sets c as
the 1−α quantile of the χ2

`−k distribution. This is justified by the asymptotic null distribution of S which
we now derive.

Theorem 12.16 Under Assumption 12.2 and E
[
e2 | Z

] = σ2, then as n → ∞,
S −→

d
χ2
`−k . For c satisfying α= 1−G`−k (c), P [S > c |H0] →α so the test “Reject

H0 if S > c” has asymptotic size α.

We prove Theorem 12.16 below.
The Sargan statistic S is an asymptotic test of the overidentifying restrictions under the assumption

of conditional homoskedasticity. It has some limitations. First, it is an asymptotic test and does not have
a finite sample (e.g. F ) counterpart. Simulation evidence suggests that the test can be oversized (reject
too frequently) in small and moderate sample sizes. Consequently, p-values should be interpreted cau-
tiously. Second, the assumption of conditional homoskedasticity is unrealistic in applications. The best
way to generalize the Sargan statistic to allow heteroskedasticity is to use the GMM overidentification
statistic – which we will examine in Chapter 13. For 2SLS, Wooldrige (1995) suggested a robust score test,
but Baum, Schaffer and Stillman (2003) point out that it is numerically equivalent to the GMM overiden-
tification statistic. Hence the bottom line appears to be that to allow heteroskedasticity or clustering it is
best to use a GMM approach.

In overidentified applications it is always prudent to report an overidentification test. If the test is
insignificant it means that the overidentifying restrictions are not rejected, supporting the estimated
model. If the overidentifying test statistic is highly significant (if the p-value is very small) this is evidence
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that the overidentifying restrictions are violated. In this case we should be concerned that the model is
misspecified and interpreting the parameter estimates should be done cautiously.

When reporting the results of an overidentification test it seems reasonable to focus on very small
significance levels such as 1%. This means that we should only treat a model as “rejected” if the Sargan
p-value is very small, e.g. less than 0.01. The reason to focus on very small significance levels is because
it is very difficult to interpret the result “The model is rejected”. Stepping back a bit it does not seem
credible that any overidentified model is literally true; rather what seems potentially credible is that an
overidentified model is a reasonable approximation. A test is asking the question “Is there evidence
that a model is not true” when we really want to know the answer to “Is there evidence that the model
is a poor approximation”. Consequently it seems reasonable to require strong evidence to lead to the
conclusion “Let’s reject this model”. The recommendation is that mild rejections (p-values between 1%
and 5%) should be viewed as mildly worrisome but not critical evidence against a model. The results of
an overidentification test should be integrated with other information before making a strong decision.

We illustrate the methods with the Card college proximity example. We have estimated two overi-
dentified models by 2SLS in columns 4 & 5 of Table 12.1. In each case the number of overidentifying
restrictions is 1. We report the Sargan statistic and its asymptotic p-value (calculated using the χ2

1 dis-
tribution) in the table. Both p-values (0.37 and 0.47) are far from significant indicating that there is no
evidence that the models are misspecified.

We now prove Theorem 12.16. The statistic S is invariant to rotations of Z (replacing Z with ZC ) so
without loss of generality we assume E

[
Z Z ′]= I`. As n →∞, n−1/2Z ′e −→

d
σZ where Z ∼ N(0, I`). Also

1
n Z ′Z −→

p
I` and 1

n Z ′X −→
p

Q , say. Then

n−1/2Z ′ê =
(

I`−
(

1

n
Z ′X

)(
1

n
X ′P Z X

)−1 (
1

n
X ′Z

)(
1

n
Z ′Z

)−1)
n−1/2Z ′e

−→
d
σ

(
I`−Q

(
Q ′Q

)−1 Q ′
)

Z.

Since σ̂2 −→
p
σ2 it follows that

S −→
d

Z′
(

I`−Q
(
Q ′Q

)−1 Q ′
)

Z ∼χ2
`−k .

The distribution is χ2
`−k because I`−Q

(
Q ′Q

)−1 Q ′ is idempotent with rank `−k.
The Sargan statistic test can be implemented in Stata using the command estat overid after ivregress

2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified (that is, without
the ‘,r’ option), or otherwise by the command estat overid, forcenonrobust.

Denis Sargan

The British econometrician John Denis Sargan (1924-1996) was a pioneer in the
field of econometrics. He made a range of fundamental contributions including
the overidentification test, Edgeworth expansions, and unit root theory. He was
also influential in his role as dissertation advisor for many LSE-trained econo-
metricians.
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12.32 Subset OverIdentification Tests

Tests of H0 : E [Z e] = 0 are typically interpreted as tests of model specification. The alternative H1 :
E [Z e] 6= 0 means that at least one element of Z is correlated with the error e and is thus an invalid instru-
mental variable. In some cases it may be reasonable to test only a subset of the moment conditions.

As in the previous section we restrict attention to the homoskedastic case E
[
e2 | Z

]=σ2.
Partition Z = (Za , Zb) with dimensions `a and `b , respectively, where Za contains the instruments

which are believed to be uncorrelated with e and Zb contains the instruments which may be correlated
with e. It is necessary to select this partition so that `a > k, or equivalently `b < `− k. This means
that the model with just the instruments Za is over-identified, or that `b is smaller than the number of
overidentifying restrictions. (If `a = k then the tests described here exist but reduce to the Sargan test so
are not interesting.) Hence the tests require that `−k > 1, that the number of overidentifying restrictions
exceeds one.

Given this partition the maintained hypothesis is E [Zae] = 0. The null and alternative hypotheses
are H0 : E [Zbe] = 0 against H1 : E [Zbe] 6= 0. That is, the null hypothesis is that the full set of moment
conditions are valid while the alternative hypothesis is that the instrument subset Zb is correlated with e
and thus an invalid instrument. Rejection of H0 in favor of H1 is then interpreted as evidence that Zb is
misspecified as an instrument.

Based on the same reasoning as described in the previous section, to test H0 against H1 we consider
a partitioned version of the regression (12.66)

e = Z ′
aαa +Z ′

bαb +ν

but now focus on the coefficient αb . Given E [Zae] = 0, H0 is equivalent to αb = 0. The equation is
estimated by least squares replacing the unobserved ei with the 2SLS residual êi . The estimate of αb is

α̂b = (
Z ′

b M a Z b
)−1 Z ′

b M a ê

where M a = I n −Z a
(

Z ′
a Z a

)−1 Z ′
a . Newey (1985) showed that an optimal (asymptotically most powerful)

test of H0 against H1 is to reject for large values of the score statistic

N = α̂′
b (v̂ar[α̂b])− α̂b =

ê ′R
(

R ′R −R ′X̂
(

X̂
′
X̂

)−1
X̂

′
R

)−1

R ′ê

σ̂2

where X̂ = P X , P = Z
(

Z ′Z
)−1 Z ′, R = M a Z b , and σ̂2 = 1

n ê ′ê.
Independently from Newey (1985), Eichenbaum, L. Hansen, and Singleton (1988) proposed a test

based on the difference of Sargan statistics. Let S be the Sargan test statistic (12.67) based on the full
instrument set and Sa be the Sargan statistic based on the instrument set Za . The Sargan difference
statistic is C = S − Sa . Specifically, let β̃2sls be the 2SLS estimator using the instruments Za only, set
ẽi = Yi −X ′

i β̃2sls, and set σ̃2 = 1
n ẽ ′ẽ. Then

Sa = ẽ ′Z a
(

Z ′
a Z a

)−1 Z ′
a ẽ

σ̃2 .

An advantage of the C statistic is that it is quite simple to calculate from the standard regression output.
At this point it is useful to reflect on our stated requirement that `a > k. Indeed, if `a < k then Za fails

the order condition for identification and β̃2sls cannot be calculated. Thus `a ≥ k is necessary to compute
Sa and hence S. Furthermore, if `a = k then model a is just identified so while β̃2sls can be calculated,
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the statistic Sa = 0 so C = S. Thus when `a = k the subset test equals the full overidentification test so
there is no gain from considering subset tests.

The C statistic Sa is asymptotically equivalent to replacing σ̃2 in Sa with σ̂2, yielding the statistic

C∗ = ê ′Z
(

Z ′Z
)−1 Z ′ê

σ̂2 − ẽ ′Z a
(

Z ′
a Z a

)−1 Z ′
a ẽ

σ̂2 .

It turns out that this is Newey’s statistic N . These tests have chi-square asymptotic distributions.
Let c satisfy α= 1−G`b (c).

Theorem 12.17 Algebraically, N =C∗. Under Assumption 12.2 and E
[
e2 | Z

]=
σ2, as n →∞, N −→

d
χ2
`b

and C −→
d
χ2
`b

. Thus the tests “Reject H0 if N > c” and

“Reject H0 if C > c” are asymptotically equivalent and have asymptotic size α.

Theorem 12.17 shows that N and C∗ are identical and are near equivalents to the convenient statistic
C . The appropriate asymptotic distribution is χ2

`b
. Computationally, the easiest method to implement

a subset overidentification test is to estimate the model twice by 2SLS, first using the full instrument
set Z and the second using the partial instrument set Za . Compute the Sargan statistics for both 2SLS
regressions and compute C as the difference in the Sargan statistics. In Stata, for example, this is simple
to implement with a few lines of code.

We illustrate using the Card college proximity example. Our reported 2SLS estimates have `−k = 1
so there is no role for a subset overidentification test. (Recall, the number of overidentifying restrictions
must exceed one.) To illustrate we add extra instruments to the estimates in column 5 of Table 12.1
(the 2SLS estimates using public, private, age, and age2 as instruments for education, experience, and
experience2/100). We add two instruments: the years of education of the father and the mother of the
worker. These variables had been used in the earlier labor economics literature as instruments but Card
did not. (He used them as regression controls in some specifications.) The motivation for using parent’s
education as instruments is the hypothesis that parental education influences children’s educational
attainment but does not directly influence their ability. The more modern labor economics literature
has disputed this idea, arguing that children are educated in part at home and thus parent’s education
has a direct impact on the skill attainment of children (and not just an indirect impact via educational
attainment). The older view was that parent’s education is a valid instrument, the modern view is that it
is not valid. We can test this dispute using a overidentification subset test.

We do this by estimating the wage equation by 2SLS using public, private, age, age2, father, and
mother, as instruments for education, experience, and experience2/100). We do not report the param-
eter estimates here but observe that this model is overidentified with 3 overidentifying restrictions. We
calculate the Sargan overidentification statistic. It is 7.9 with an asymptotic p-value (calculated using
χ2

3) of 0.048. This is a mild rejection of the null hypothesis of correct specification. As we argued in the
previous section this by itself is not reason to reject the model. Now we consider a subset overidenti-
fication test. We are interested in testing the validity of the two instruments father and mother, not the
instruments public, private, age, age2. To test the hypothesis that these two instruments are uncorrelated
with the structural error we compute the difference in Sargan statistic, C = 7.9−0.5 = 7.4, which has a
p-value (calculated using χ2

2) of 0.025. This is marginally statistically significant, meaning that there is
evidence that father and mother are not valid instruments for the wage equation. Since the p-value is not
smaller than 1% it is not overwhelming evidence but it still supports Card’s decision to not use parental
education as instruments for the wage equation.
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We now prove the results in Theorem 12.17.
We first show that N = C∗. Define P a = Z a

(
Z ′

a Z a
)−1 Z ′

a and P R = R
(
R ′R

)−1 R ′. Since [Z a ,R] span
Z we find P = P R +P a and P R P a = 0. It will be useful to note that

P R X̂ = P R P X = P R X

X̂
′
X̂ − X̂

′
P R X̂ = X ′ (P −P R ) X = X ′P a X .

The fact that X ′P ê = X̂
′
ê = 0 implies X ′P R ê =−X ′P a ê. Finally, since Y = X β̂+ ê,

ẽ =
(

I n −X
(

X ′P a X
)−1 X ′P a

)
ê

so
ẽ ′P a ẽ = ê ′

(
P a −P a X

(
X ′P a X

)−1 X ′P a

)
ê.

Applying the Woodbury matrix equality to the definition of N and the above algebraic relationships,

N =
ê ′P R ê + ê ′P R X̂

(
X̂

′
X̂ − X̂

′
P R X̂

)−1
X̂

′
P R ê

σ̂2

= ê ′P ê − ê ′P a ê + ê ′P a X
(

X ′P a X
)−1 X ′P a ê

σ̂2

= ê ′P ê − ẽ ′P a ẽ

σ̂2

=C∗

as claimed.
We next establish the asymptotic distribution. Since Z a is a subset of Z , P M a = M aP , thus P R = R

and R ′X = R ′X̂ . Consequently

1p
n

R ′ê = 1p
n

R ′ (Y −X β̂
)

= 1p
n

R ′
(

I n −X
(

X̂
′
X̂

)−1
X̂

′
)

e

= 1p
n

R ′
(

I n − X̂
(

X̂
′
X̂

)−1
X̂

′
)

e

−→
d

N(0,V 2)

where

V 2 = plim
n→∞

(
1

n
R ′R − 1

n
R ′X̂

(
1

n
X̂

′
X̂

)−1 1

n
X̂

′
R

)
.

It follows that N =C∗ −→
d
χ2
`b

as claimed. Since C =C∗+op (1) it has the same limiting distribution.

12.33 Bootstrap Overidentification Tests

In small to moderate sample sizes the overidentification tests are not well approximated by the asymp-
totic chi-square distributions. For improved accuracy it is advised to use bootstrap critical values. The
bootstrap for 2SLS (Section 12.23) can be used for this purpose but the bootstrap version of the overiden-
tification statistic must be adjusted. This is because in the bootstrap universe the overidentified moment
conditions are not satisfied. One solution is to center the moment conditions.
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For the 2SLS estimator the standard overidentification test is based on the Sargan statistic

S = n
ê ′Z

(
Z ′Z

)−1 Z ′ê
ê ′ê

ê = Y −X β̂2sls.

The recentered bootstrap analog is

S∗∗ = n

(
ê∗′Z ∗−Z ′ê

)(
Z ∗′Z ∗)−1 (

Z ∗′ê∗−Z ′ê
)

ê∗′ê∗

ê∗ = Y ∗−X ∗β̂∗
2sls.

On each bootstrap sample S∗∗(b) is calculated and stored. The bootstrap p-value is

p∗ = 1

B

B∑
b=1

1
{
S∗∗(b) > S

}
.

This bootstrap p-value is valid because the statistic S∗∗ satisfies the overidentified moment condi-
tions.

12.34 Local Average Treatment Effects

In a pair of influential papers, Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996) pro-
posed an new interpretation of the instrumental variables estimator using the potential outcomes model
introduced in Section 2.30.

We will restrict attention to the case that the endogenous regressor X and excluded instrument Z are
binary variables. We write the model as a pair of potential outcome functions. The dependent variable Y
is a function of the regressor and an unobservable vector U , Y = h (X ,U ), and the endogenous regressor
X is a function of the instrument Z and U , X = g (Z ,U ). By specifying U as a vector there is no loss of
generality in letting both equations depend on U .

In this framework the outcomes are determined by the random vector U and the exogenous instru-
ment Z . This determines X which determines Y . To put this in the context of the college proximity
example the variable U is everything specific about an individual. Given college proximity Z the person
decides to attend college or not. The person’s wage is determined by the individual attributes U as well
as college attendence X but is not directly affected by college proximity Z .

We can omit the random variable U from the notation as follows. An individual has a realization U .
We then set Y (x) = h (x,U ) and X (z) = g (z,U ). Also, given a realization Z the observables are X = X (Z )
and Y = Y (X ).

In this model the causal effect of college for an individual is C = Y (1)−Y (0). As discussed in Section
2.30, this is individual-specific and random.

We would like to learn about the distribution of the causal effects, or at least features of the distribu-
tion. A common feature of interest is the average treatment effect (ATE)

ATE = E [C ] = E [Y (1)−Y (0)] .

This, however, it typically not feasible to estimate allowing for endogenous X without strong assump-
tions (such as that the causal effect C is constant across individuals). The treatment effect literature has
explored what features of the distribution of C can be estimated.
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One particular feature of interest emphasized by Imbens and Angrist (1994) is the local average treat-
ment effect (LATE). Roughly, this is the average effect upon those effected by the instrumental variable.
To understand LATE, consider the college proximity example. In the potential outcomes framework each
person is fully characterized by their individual unobservable U . Given U , their decision to attend college
is a function of the proximity indicator Z . For some students, proximity has no effect on their decision.
For other students, it has an effect in the specific sense that given Z = 1 they choose to attend college
while if Z = 0 they choose to not attend. We can summarize the possibilites with the following chart
which is based on labels developed by Angrist, Imbens and Rubin (1996).

X (0) = 0 X (0) = 1
X (1) = 0 Never Takers Defiers
X (1) = 1 Compliers Always Takers

The columns indicate the college attendence decision given Z = 0 (not close to a college). The rows
indicate the college attendence decision given Z = 1 (close to a college). The four entries are labels for the
four types of individuals based on these decisions. The upper-left entry are the individuals who do not
attend college regardless of Z . They are called “Never Takers”. The lower-right entry are the individuals
who conversely attend college regardless of Z . They are called “Always Takers”. The bottom left are the
individuals who only attend college if they live close to one. They are called “Compliers”. The upper
right entry is a bit of a challenge. These are individuals who attend college only if they do not live close
to one. They are called “Dediers”. Imbens and Angrist discovered that to identify the parameters of
interest we need to assume that there are no Dediers, or equivalently that X (1) ≥ X (0). They call this a
“monotonicity” condition – increasing the instrument does not decrease X for any individual.

As another example, suppose we are interested in the effect of wearing a face mask X on health Y
during a virus pandemic. Wearing a face mask is a choice made by the individual so should be viewed
as endogenous. For an instrument Z consider a government policy that requires face masks to be worn
in public. The “Compliers” are those who wear a face mask if there is a policy but otherwise do not. The
“Deniers” are those who do the converse. That is, these individuals would have worn a face mask based
on the evidence of a pandemic but rebel against a government policy. Once again, identification requires
that there are no Deniers.

We can distinguish the types in the table by the relative values of X (1)− X (0). For Never-Takers and
Always-Takers X (1)−X (0) = 0, while for Compliers X (1)−X (0) = 1.

We are interested in the causal effect C = h(1,U )−h(0,U ) of college on wages. The average causal
effect (ACE) is its expectation E [Y (1)−Y (0)]. To estimate the ACE we need observations of both Y (0) and
Y (1) which means we need to observe some individuals who attend college and some who do not attend
college. Consider the group “Never-Takers”. They never attend college so we only observe Y (0). It is thus
impossible to estimate the ACE of college for this group. Similarly consider the group “Always-Takers”.
They always attend college so we only observe Y (1) and again we cannot estimate the ACE of college for
this group. The group for which we can estimate the ACE are the “Compliers”. The ACE for this group is

LATE = E [Y (1)−Y (0) | X (1) > X (0)] .

Imbens and Angrist call this the local average treatment effect (LATE) as it is the average treatment
effect for the sub-population whose endogenous regressor is affected by the instrument. Examining the
definition, the LATE is the average causal effect of college attendence on wages for the sub-sample of
individuals who choose to attend college if (and only if) they live close to one.

Interestingly, we show below that

LATE = E [Y | Z = 1]−E [Y | Z = 0]

E [X | Z = 1]−E [X | Z = 0]
. (12.68)
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That is, LATE equals the Wald expression (12.27) for the slope coefficient in the IV regression model.
This means that the standard IV estimator is an estimator of LATE. Thus when treatment effects are
potentially heterogeneous we can interpret IV as an estimator of LATE. The equality (12.68) occurs under
the following conditions.

Assumption 12.3 U and Z are independent and P [X (1)−X (0) < 0] = 0.

One interesting feature about LATE is that its value can depend on the instrument Z and the dis-
tribution of causal effects C in the population. To make this concrete suppose that instead of the Card
proximity instrument we consider an instrument based on the financial cost of local college attendence.
It is reasonable to expect that while the set of students affected by these two instruments are similar the
two sets of students will not be the same. That is, some students may be responsive to proximity but
not finances, and conversely. If the causal effect C has a different average in these two groups of stu-
dents then LATE will be different when calculated with these two instruments. Thus LATE can vary by
the choice of instrument.

How can that be? How can a well-defined parameter depend on the choice of instrument? Doesn’t this
contradict the basic IV regression model? The answer is that the basic IV regression model is restrictive
– it specifies that the causal effect β is common across all individuals. Its value is the same regardless
of the choice of specific instrument (so long as it satisfies the instrumental variables assumptions). In
contrast, the potential outcomes framework is more general allowing for the causal effect to vary across
individuals. What this analysis shows us is that in this context is quite possible for the LATE coefficient
to vary by instrument. This occurs when causal effects are heterogeneous.

One implication of the LATE framework is that IV estimates should be interpreted as causal effects
only for the population of compliers. Interpretation should focus on the population of potential compli-
ers and extension to other populations should be done with caution. For example, in the Card proximity
model the IV estimates of the causal return to schooling presented in Table 12.1 should be interpreted as
applying to the population of students who are incentivized to attend college by the presence of a college
within their home county. The estimates should not be applied to other students.

Formally, the analysis of this section examined the case of a binary instrument and endogenous re-
gressor. How does this generalize? Suppose that the regressor X is discrete, taking J +1 discrete values.
We can then rewrite the model as one with J binary endogenous regressors. If we then have J binary in-
struments we are back in the Imbens-Angrist framework (assuming the instruments have a monotonic
impact on the endogenous regressors). A benefit is that with a larger set of instruments it is plausible
that the set of compliers in the population is expanded.

We close this section by showing (12.68) under Assumption 12.3. The realized value of X can be
written as

X = (1−Z ) X (0)+Z X (1) = X (0)+Z (X (1)−X (0)) .

Similarly
Y = Y (0)+X (Y (1)−Y (0)) = Y (0)+XC .

Combining,
Y = Y (0)+X (0)C +Z (X (1)−Y (0))C .

The independence of u and Z implies independence of (Y (0),Y (1), X (0), X (1),C ) and Z . Thus

E [Y | Z = 1] = E [Y (0)]+E [X (0)C ]+E [(X (1)−X (0))C ]
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and
E [Y | Z = 0] = E [Y (0)]+E [X (0)C ] .

Subtracting we obtain

E [Y | Z = 1]−E [Y | Z = 0] = E [(X (1)−X (0))C ]

= 1×E [C | X (1)−X (0) = 1]P [X (1)−X (0) = 1]

+0×E [C | X (1)−X (0) = 0]P [X (1)−X (0) = 0]

+ (−1)×E [C | X (1)−X (0) =−1]P [X (1)−X (0) =−1]

= E [C | X (1)−X (0) = 1](E [X | X = 1]−E [X | Z = 0])

where the final equality uses P [X (1)−X (0) < 0] = 0 and

P [X (1)−X (0) = 1] = E [X (1)−X (0)] = E [X | Z = 1]−E [X | Z = 0] .

Rearranging

LATE = E [C | X (1)−X (0) = 1] = E [Y | Z = 1]−E [Y | Z = 0]

E [X | Z = 1]−E [X | Z = 0]

as claimed.

12.35 Identification Failure

Recall the reduced form equation

X2 = Γ′12Z1 +Γ′22Z2 +u2.

The parameter β fails to be identified if Γ22 has deficient rank. The consequences of identification failure
for inference are quite severe.

Take the simplest case where k1 = 0 and k2 = `2 = 1. Then the model may be written as

Y = Xβ+e (12.69)

X = Zγ+u

and Γ22 = γ= E [Z X ]/E
[

Z 2
]

. We see thatβ is identified if and only if γ 6= 0, which occurs when E [X Z ] 6= 0.
Thus identification hinges on the existence of correlation between the excluded exogenous variable and
the included endogenous variable.

Suppose this condition fails. In this case γ = 0 and E [X Z ] = 0. We now analyze the distribution of
the least squares and IV estimators of β. For simplicity we assume conditional homoskedasticity and
normalize the variances of e, u, and Z to unity. Thus

var

[(
e
u

)∣∣∣∣ Z

]
=

(
1 ρ

ρ 1

)
. (12.70)

The errors have non-zero correlation ρ 6= 0 when the variables are endogenous.
By the CLT we have the joint convergence

1p
n

n∑
i=1

(
Zi ei

Zi ui

)
−→

d

(
ξ1

ξ2

)
∼ N

(
0,

(
1 ρ

ρ 1

))
.

It is convenient to define ξ0 = ξ1 −ρξ2 which is normal and independent of ξ2.
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As a benchmark it is useful to observe that the least squares estimator of β satisfies

β̂ols −β= n−1 ∑n
i=1 ui ei

n−1 ∑n
i=1 u2

i

−→
p
ρ 6= 0

so endogeneity causes β̂ols to be inconsistent for β.
Under identification failure γ= 0 the asymptotic distribution of the IV estimator is

β̂iv −β=
1p
n

∑n
i=1 Zi ei

1p
n

∑n
i=1 Zi Xi

−→
d

ξ1

ξ2
= ρ+ ξ0

ξ2
.

This asymptotic convergence result uses the continuous mapping theorem which applies since the func-
tion ξ1/ξ2 is continuous everywhere except at ξ2 = 0, which occurs with probability equal to zero.

This limiting distribution has several notable features.
First, β̂iv does not converge in probability to a limit, rather it converges in distribution to a random

variable. Thus the IV estimator is inconsistent. Indeed, it is not possible to consistently estimate an
unidentified parameter and β is not identified when γ= 0.

Second, the ratio ξ0/ξ2 is symmetrically distributed about zero so the median of the limiting distri-
bution of β̂iv is β+ρ. This means that the IV estimator is median biased under endogeneity. Thus under
identification failure the IV estimator does not correct the centering (median bias) of least squares.

Third, the ratio ξ0/ξ2 of two independent normal random variables is Cauchy distributed. This is
particularly nasty as the Cauchy distribution does not have a finite mean. The distribution has thick
tails meaning that extreme values occur with higher frequency than the normal. Inferences based on the
normal distribution can be quite incorrect.

Together, these results show that γ = 0 renders the IV estimator particularly poorly behaved – it is
inconsistent, median biased, and non-normally distributed.

We can also examine the behavior of the t-statistic. For simplicity consider the classical (homoskedas-
tic) t-statistic. The error variance estimate has the asymptotic distribution

σ̂2 = 1

n

n∑
i=1

(
Yi −Xi β̂iv

)2

= 1

n

n∑
i=1

e2
i −

2

n

n∑
i=1

ei Xi
(
β̂iv −β

)+ 1

n

n∑
i=1

X 2
i

(
β̂iv −β

)2

−→
d

1−2ρ
ξ1

ξ2
+

(
ξ1

ξ2

)2

.

Thus the t-statistic has the asymptotic distribution

T = β̂iv −β√
σ̂2 ∑n

i=1 Z 2
i /

∣∣∑n
i=1 Zi Xi

∣∣ −→d ξ1/ξ2√
1−2ρ ξ1

ξ2
+

(
ξ1
ξ2

)2
.

The limiting distribution is non-normal, meaning that inference using the normal distribution will be
(considerably) incorrect. This distribution depends on the correlation ρ. The distortion is increasing
in ρ. Indeed as ρ → 1 we have ξ1/ξ2 →p 1 and the unexpected finding σ̂2 →p 0. The latter means that
the conventional standard error s(β̂iv) for β̂iv also converges in probability to zero. This implies that the
t-statistic diverges in the sense |T | →p ∞. In this situations users may incorrectly interpret estimates as
precise despite the fact that they are highly imprecise.
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12.36 Weak Instruments

In the previous section we examined the extreme consequences of full identification failure. Similar
problems occur when identification is weak in the sense that the reduced form coefficients are of small
magnitude. In this section we derive the asymptotic distribution of the OLS, 2SLS, and LIML estimators
when the reduced form coefficients are treated as weak. We show that the estimators are inconsistent
and the 2SLS and LIML estimators remain random in large samples.

To simplify the exposition we assume that there are no included exogenous variables (no X1) so we
write X2, Z2, and β2 simply as X , Z , and β. The model is

Y = X ′β+e

X = Γ′Z +u2.

Recall the reduced form error vector u = (u1,u2) and its covariance matrix

E
[
uu′]=Σ=

[
Σ11 Σ12

Σ21 Σ22

]
.

Recall that the structural error is e = u1 −β′u2 = γ′u where γ = (
1,−β)

which has variance E
[
e2 | Z

] =
γ′Σγ. Also define the covariance Σ2e = E [u2e | Z ] =Σ21 −Σ22β.

In Section 12.35 we assumed complete identification failure in the sense that Γ = 0. We now want
to assume that identification does not completely fail but is weak in the sense that Γ is small. A rich
asymptotic distribution theory has been developed to understand this setting by modeling Γ as “local-
to-zero”. The seminal contribution is Staiger and Stock (1997). The theory was extended to nonlinear
GMM estimation by Stock and Wright (2000).

The technical device introduced by Staiger and Stock (1997) is to assume that the reduced form pa-
rameter is local-to-zero, specifically

Γ= n−1/2C (12.71)

where C is a free matrix. The n−1/2 scaling is picked because it provides just the right balance to allow
a useful distribution theory. The local-to-zero assumption (12.71) is not meant to be taken literally but
rather is meant to be a useful distributional approximation. The parameter C indexes the degree of
identification. Larger ‖C‖ implies stronger identification; smaller ‖C‖ implies weaker identification.

We now derive the asymptotic distribution of the least squares, 2SLS, and LIML estimators under the
local-to-unity assumption (12.71).

The least squares estimator satisfies

β̂ols −β= (
n−1X ′X

)−1 (
n−1X ′e

)
= (

n−1U ′
2U 2

)−1 (
n−1U ′

2e
)+op (1)

−→
p
Σ−1

22Σ2e .

Thus the least squares estimator is inconsistent for β.
To examine the 2SLS estimator, by the central limit theorem

1p
n

n∑
i=1

Zi u′
i −→d ξ= [ξ1,ξ2]

where
vec(ξ) ∼ N

(
0,E

[
uu′⊗Z Z ′]) .
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This implies
1p
n

Z ′e −→
d
ξe = ξγ.

We also find that
1p
n

Z ′X = 1

n
Z ′ZC + 1p

n
Z ′U 2 −→

d
Q Z C +ξ2.

Thus

X ′P Z X =
(

1p
n

X ′Z
)(

1

n
Z ′Z

)−1 (
1p
n

Z ′X
)
−→

d

(
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

)
and

X ′P Z e =
(

1p
n

X ′Z
)(

1

n
Z ′Z

)−1 (
1p
n

Z ′e
)
−→

d

(
Q Z C +ξ2

)′Q−1
Z ξe .

We find that the 2SLS estimator has the asymptotic distribution

β̂2sls −β= (
X ′P Z X

)−1 (
X ′P Z e

)
−→

d

((
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

))−1 (
Q Z C +ξ2

)′Q−1
Z ξe . (12.72)

As in the case of complete identification failure we find that β̂2sls is inconsistent for β, it is asymptotically
random, and its asymptotic distribution is non-normal. The distortion is affected by the coefficient C .
As ‖C‖→∞ the distribution in (12.72) converges in probability to zero suggesting that β̂2sls is consistent
for β. This corresponds to the classic “strong identification” context.

Now consider the LIML estimator. The reduced form is ~Y = ZΠ+U . This implies MZ ~Y = MZ U and
by standard asymptotic theory

1

n
~Y

′
MZ ~Y = 1

n
U ′MZ U −→

p
Σ= E[

uu′] .

Define β= [
β, I k

]
so that the reduced form coefficients equalΠ= [

Γβ,Γ
]= n−1/2Cβ. Then

1p
n

Z ′~Y = 1

n
Z ′ZCβ+ 1p

n
Z ′U −→

d
Q Z Cβ+ξ

and
~Y

′
Z

(
Z ′Z

)−1 Z ′~Y −→
d

(
Q Z Cβ+ξ

)′
Q−1

Z

(
Q Z Cβ+ξ

)
.

This allows us to calculate that by the continuous mapping theorem

nµ̂= min
γ

γ′~Y ′
Z

(
Z ′Z

)−1 Z ′~Y γ

γ′ 1
n
~Y

′
MZ ~Y γ

−→
d

min
γ

γ′
(
Q Z Cβ+ξ

)′
Q−1

Z

(
Q Z Cβ+ξ

)
γ

γ′Σγ
=µ∗

say, which is a function of ξ and thus random. We deduce that the asymptotic distribution of the LIML
estimator is
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β̂liml −β=
(

X ′P Z X −nµ̂
1

n
X ′M Z X

)−1 (
X ′P Z e −nµ̂

1

n
X ′M Z e

)
−→

d

((
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

)−µ∗Σ22

)−1 ((
Q Z C +ξ2

)′Q−1
Z ξe −µ∗Σ2e

)
.

Similarly to 2SLS, the LIML estimator is inconsistent for β, is asymptotically random, and non-normally
distributed.

We summarize.

Theorem 12.18 Under (12.71),

β̂ols −β−→
p
Σ−1

22Σ2e

β̂2sls −β−→
d

((
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

))−1 (
Q Z C +ξ2

)′Q−1
Z ξe

and

β̂liml −β−→
d

((
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

)−µ∗Σ22

)−1

×
((

Q Z C +ξ2
)′Q−1

Z ξe −µ∗Σ2e

)
where

µ∗ = min
γ

γ′
(
Q Z Cβ+ξ

)′
Q−1

Z

(
Q Z Cβ+ξ

)
γ

γ′Σγ

and β= [
β, I k

]
.

All three estimators are inconsistent. The 2SLS and LIML estimators are asymptotically random with
non-standard distributions, similar to the asymptotic distribution of the IV estimator under complete
identification failure explored in the previous section. The difference under weak identification is the
presence of the coefficient matrix C .

12.37 Many Instruments

Some applications have available a large number ` of instruments. If they are all valid, using a large
number should reduce the asymptotic variance relative to estimation with a smaller number of instru-
ments. Is it then good practice to use many instruments? Or is there a cost to this practice? Bekker
(1994) initiated a large literature investigating this question by formalizing the idea of “many instru-
ments”. Bekker proposed an asymptotic approximation which treats the number of instruments ` as
proportional to the sample size, that is ` = αn, or equivalently that `/n → α ∈ [0,1). The distributional
theory obtained is similar in many respects to the weak instrument theory outlined in the previous sec-
tion. Consequently the impact of “weak” and “many” instruments is similar.

Again for simplicity we assume that there are no included exogenous regressors so that the model is

Y = X ′β+e (12.73)

X = Γ′Z +u2
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with Z `×1. We also make the simplifying assumption that the reduced form errors are conditionally
homoskedastic. Specifically,

E
[
uu′ | Z

]=Σ=
[
Σ11 Σ12

Σ21 Σ22

]
. (12.74)

In addition we assume that the conditional fourth moments are bounded

E
[‖u‖4 | Z

]≤ B <∞. (12.75)

The idea that there are “many instruments” is formalized by the assumption that the number of in-
struments is increasing proportionately with the sample size

`

n
−→α. (12.76)

The best way to think about this is to viewα as the ratio of ` to n in a given sample. Thus if an application
has n = 100 observations and `= 10 instruments, then we should treat α= 0.10.

Suppose that there is a single endogenous regressor X . Calculate its variance using the reduced form:
var[X ] = var

[
Z ′Γ

]+var[u]. Suppose as well that var[X ] and var[u] are unchanging as ` increases. This
implies that var

[
Z ′Γ

]
is unchanging even though the dimension ` is increasing. This is a useful assump-

tion as it implies that the population R2 of the reduced form is not changing with `. We don’t need this
exact condition, rather we simply assume that the sample version converges in probability to a fixed
constant. Specifically, we assume that

1

n

n∑
i=1
Γ′Zi Z ′

iΓ−→p H (12.77)

for some matrix H > 0. Again, this essentially implies that the R2 of the reduced form regressions for
each component of X converge to constants.

As a baseline it is useful to examine the behavior of the least squares estimator of β. First, observe
that the variance of vec

(
n−1 ∑n

i=1Γ
′Zi u′

i

)
, conditional on Z , is

Σ⊗n−2
n∑

i=1
Γ′Zi Z ′

iΓ−→p 0

by (12.77). Thus it converges in probability to zero:

n−1
n∑

i=1
Γ′Zi u′

i −→p 0. (12.78)

Combined with (12.77) and the WLLN we find

1

n

n∑
i=1

Xi ei = 1

n

n∑
i=1
Γ′Zi ei + 1

n

n∑
i=1

u2i ei −→
p
Σ2e

and
1

n

n∑
i=1

Xi X ′
i =

1

n

n∑
i=1
Γ′Zi Z ′

iΓ+
1

n

n∑
i=1
Γ′Zi u′

2i +
1

n

n∑
i=1

u2i Z ′
iΓ+

1

n

n∑
i=1

u2i u′
2i −→p H +Σ22.

Hence

β̂ols =β+
(

1

n

n∑
i=1

Xi X ′
i

)−1 (
1

n

n∑
i=1

Xi ei

)
−→

p
β+ (H +Σ22)−1Σ2e .
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Thus least squares is inconsistent for β.
Now consider the 2SLS estimator. In matrix notation, setting P Z = Z

(
Z ′Z

)−1 Z ′,

β̂2sls −β=
(

1

n
X ′P Z X

)−1 (
1

n
X ′P Z e

)
=

(
1

n
Γ
′
Z ′ZΓ+ 1

n
Γ
′
Z ′u2 + 1

n
u′

2ZΓ+ 1

n
u′

2P Z u2

)−1 (
1

n
Γ′Z ′e + 1

n
u′

2P Z e
)

. (12.79)

In the expression on the right-side of (12.79) several of the components have been examined in (12.77)
and (12.78). We now examine the remaining components 1

n u′
2P Z e and 1

n u′
2P Z u2 which are sub-components

of the matrix 1
n u′P Z u. Take the j k th element 1

n u′
j P Z uk .

First, take its expectation. We have (given under the conditional homoskedasticity assumption (12.74))

E

[
1

n
u′

j P Z uk

∣∣∣∣ Z
]
= 1

n
tr

(
E
[

P Z uk u′
j

∣∣∣ Z
])

= 1

n
tr(P Z )Σ j k = `

n
Σ j k →αΣ j k (12.80)

using tr(P Z ) = `.
Second, we calculate its variance which is a more cumbersome exercise. Let Pi m = Z ′

i

(
Z ′Z

)−1 Zm

be the i mth element of P Z . Then u′
j PZ uk = ∑n

i=1

∑n
m=1 u j i ukmPi m . The matrix P Z is idempotent. It

therefore has the properties
∑n

i=1 Pi i = tr(P Z ) = ` and 0 ≤ Pi i ≤ 1. The property P Z P Z = P Z also implies∑n
m=1 P 2

i m = Pi i . Then

var

[
1

n
u′

j P Z uk

∣∣∣∣ Z
]
= 1

n2 E

[
n∑

i=1

n∑
m=1

(
u j i ukm −E[

u j i ukm
]
1 {i = m}

)
Pi m

∣∣∣∣∣ Z

]2

= 1

n2 E

[
n∑

i=1

n∑
m=1

n∑
q=1

n∑
r=1

(
u j i ukm −Σ j k1 {i = m}

)
Pi m

(
u j q ukr −Σ j k1

{
q = r

})
Pqr

]

= 1

n2

n∑
i=1

E
[(

u j i uki −Σ j k
)2

]
P 2

i i

+ 1

n2

n∑
i=1

∑
m 6=i

E
[

u2
j i u2

km

]
P 2

i m + 1

n2

n∑
i=1

∑
m 6=i

E
[
u j i ukmu j muki

]
P 2

i m

≤ B

n2

(
n∑

i=1
P 2

i i +2
n∑

i=1

n∑
m=1

P 2
i m

)

≤ 3B

n2

n∑
i=1

Pi i

= 3B
`

n2 → 0.

The third equality holds because the remaining cross-products have zero expectation as the observations
are independent and the errors have zero mean. The first inequality is (12.75). The second uses P 2

i i ≤ Pi i

and
∑n

m=1 P 2
i m = Pi i . The final equality is

∑n
i=1 Pi i = `.

Using (12.76), (12.80), Markov’s inequality (B.36), and combining across all j and k we deduce that

1

n
u′P Z u −→

p
αΣ. (12.81)

Returning to the 2SLS estimator (12.79) and combining (12.77), (12.78), and (12.81), we find

β̂2sls −β−→
p

(H +αΣ22)−1αΣ2e .
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Thus 2SLS is also inconsistent for β. The limit, however, depends on the magnitude of α.
We finally examine the LIML estimator. (12.81) implies

1

n
Y ′MZ Y = 1

n
u′u − 1

n
u′P Z u −→

p
(1−α)Σ.

Similarly

1

n
Y ′Z

(
Z ′Z

)−1 Z ′Y =β′
Γ′

(
1

n
Z ′Z

)
Γβ+β′

Γ′
(

1

n
Z ′u

)
+

(
1

n
u′Z

)
Γβ+ 1

n
u′P Z u

−→
d
β
′
Hβ+αΣ.

Hence

µ̂= min
γ

γ′Y ′Z
(

Z ′Z
)−1 Z ′Y γ

γ′Y ′MZ Y γ
−→

d
min
γ

γ′
(
β
′
Hβ+αΣ

)
γ

γ′ (1−α)Σγ
= α

1−α
and

β̂liml −β=
(

1

n
X ′P Z X − µ̂ 1

n
X ′M Z X

)−1 (
1

n
X ′P Z e − µ̂ 1

n
X ′M Z e

)
−→

d

(
H +αΣ22 − α

1−α (1−α)Σ22

)−1 (
αΣ2e − α

1−α (1−α)Σ2e

)
= H−10

= 0.

Thus LIML is consistent for β, unlike 2SLS.
We state these results formally.

Theorem 12.19 In model (12.73), under assumptions (12.74), (12.75) and
(12.76), then as n →∞.

β̂ols −→p β+ (H +Σ22)−1Σ2e

β̂2sls −→p β+ (H +αΣ22)−1αΣ2e

β̂liml −→p β.

This result is quite insightful. It shows that while endogeneity (Σ2e 6= 0) renders the least squares
estimator inconsistent, the 2SLS estimator is also inconsistent if the number of instruments diverges
proportionately with n. The limit in Theorem 12.19 shows a continuity between least squares and 2SLS.
The probability limit of the 2SLS estimator is continuous inα, with the extreme case (α= 1) implying that
2SLS and least squares have the same probability limit. The general implication is that the inconsistency
of 2SLS is increasing in α.

The theorem also shows that unlike 2SLS the LIML estimator is consistent under the many instru-
ments assumption. Effectively, LIML makes a bias-correction.

Theorems 12.18 (weak instruments) and 12.19 (many instruments) tell a cautionary tale. They show
that when instruments are weak and/or many the 2SLS estimator is inconsistent. The degree of incon-
sistency depends on the weakness of the instruments (the magnitude of the matrix C in Theorem 12.18)
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and the degree of overidentification (the ratio α in Theorem 12.19). The Theorems also show that the
LIML estimator is inconsistent under the weak instrument assumption but with a bias-correction, and
is consistent under the many instrument assumption. This suggests that LIML is more robust than 2SLS
to weak and many instruments.

An important limitation of the results in Theorem 12.19 is the assumption of conditional homoskedas-
ticity. It appears likely that the consistency of LIML fails in the many instrument setting if the errors are
heteroskedastic.

In applications users should be aware of the potential consequences of the many instrument frame-
work. It is useful to calculate the “many instrument ratio” α = `/n. While there is no specific rule-of-
thumb for α which leads to acceptable inference a minimum criterion is that if α ≥ 0.05 you should be
seriously concerned about the many-instrument problem. In general, whenα is large it seems preferable
to use LIML instead of 2SLS.

12.38 Testing for Weak Instruments

In the previous sections we found that weak instruments results in non-standard asymptotic distri-
butions for the 2SLS and LIML estimators. In practice how do we know if this is a problem? Is there a way
to check if the instruments are weak?

This question was addressed in an influential paper by Stock and Yogo (2005) as an extension of
Staiger and Stock (1997). Stock-Yogo focus on two implications of weak instruments: (1) estimation bias
and (2) inference distortion. They show how to test the hypothesis that these distortions are not “too big”.
They propose F tests for the excluded instruments in the reduced form regressions with non-standard
critical values. In particular, when there is one endogenous regressor and a single instrument the Stock-
Yogo test rejects the null of weak instruments when this F statistic exceeds 10. While Stock and Yogo
explore two types of distortions, we focus exclusively on inference as that is the more challenging prob-
lem. In this section we describe the Stock-Yogo theory and tests for the case of a single endogenous re-
gressor (k2 = 1). In the following section we describe their method for the case of multiple endogeneous
regressors.

While the theory in Stock and Yogo allows for an arbitrary number of exogenous regressors and in-
struments, for the sake of clear exposition we will focus on the very simple case of no included exogenous
variables (k1 = 0) and just one exogenous instrument (`2 = 1) which is model (12.69) from Section 12.35.

Y = Xβ+e

X = ZΓ+u.

Furthermore, as in Section 12.35 we assume conditional homoskedasticity and normalize the variances
as in (12.70). Since the model is just-identified the 2SLS, LIML, and IV estimators are all equivalent.

The question of primary interest is to determine conditions on the reduced form under which the IV
estimator of the structural equation is well behaved, and secondly, what statistical tests can be used to
learn if these conditions are satisfied. As in Section 12.36 we assume that the reduced form coefficient Γ
is local-to-zero, specifically Γ = n−1/2µ. The asymptotic distribution of the IV estimator is presented in
Theorem 12.18. Given the simplifying assumptions the result is

β̂iv −β−→
d

ξe

µ+ξ2

where (ξe ,ξ2) are bivariate normal. For inference we also examine the behavior of the classical (ho-
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moskedastic) t-statistic for the IV estimator. Note

σ̂2 = 1

n

n∑
i=1

(
Yi −Xi β̂iv

)2

= 1

n

n∑
i=1

e2
i −

2

n

n∑
i=1

ei Xi
(
β̂iv −β

)+ 1

n

n∑
i=1

X 2
i

(
β̂iv −β

)2

−→
d

1−2ρ
ξe

µ+ξ2
+

(
ξe

µ+ξ2

)2

.

Thus

T = β̂iv −β√
σ̂2 ∑n

i=1 z2
i /

∣∣∑n
i=1 zi xi

∣∣ −→d ξ1√
1−2ρ ξ1

µ+ξ2
+

(
ξ1

µ+ξ2

)2

def= S. (12.82)

In general, S is non-normal and its distribution depends on the parameters ρ and µ.
Can we use the distribution S for inference on β? The distribution depends on two unknown param-

eters and neither is consistently estimable. This means we cannot use the distribution in (12.82) with
ρ and µ replaced with estimates. To eliminate the dependence on ρ one possibility is to use the “worst
case” value which turns out to be ρ = 1. By worst-case we mean the value which causes the greatest
distortion away from normal critical values. Setting ρ = 1 we have the considerable simplification

S = S1 = ξ
∣∣∣∣1+ ξ

µ

∣∣∣∣ (12.83)

where ξ ∼ N(0,1). When the model is strongly identified (so
∣∣µ∣∣ is very large) then S1 ≈ ξ is standard

normal, consistent with classical theory. However when
∣∣µ∣∣ is very small (but non-zero) |S1| ≈ ξ2/µ (in

the sense that this term dominates), which is a scaled χ2
1 and quite far from normal. As

∣∣µ∣∣ → 0 we find
the extreme case |S1|→p ∞.

While (12.83) is a convenient simplification it does not yield a useful approximation for inference as
the distribution in (12.83) is highly dependent on the unknown µ. If we take the worst-case value of µ,
which is µ= 0, we find that |S1| diverges and all distributional approximations fail.

To break this impasse Stock and Yogo (2005) recommended a constructive alternative. Rather than
using the worst-case µ they suggested finding a threshold such that if µ exceeds this threshold then the
distribution (12.83) is not “too badly” distorted from the normal distribution.

Specifically, the Stock-Yogo recommendation can be summarized by two steps. First, the distribution
result (12.83) can be used to find a threshold value τ2 such that if µ2 ≥ τ2 then the size of the nominal1

5% test “Reject if |T | ≥ 1.96” has asymptotic size P [|S1| ≥ 1.96] ≤ 0.15. This means that while the goal
is to obtain a test with size 5%, we recognize that there may be size distortion due to weak instruments
and are willing to tolerate a specific distortion. For example, a 10% distortion means we allow the actual
size to be up to 15%. Second, they use the asymptotic distribution of the reduced-form (first stage) F
statistic to test if the actual unknown value of µ2 exceeds the threshold τ2. These two steps together give
rise to the rule-of-thumb that the first-stage F statistic should exceed 10 in order to achieve reliable IV
inference. (This is for the case of one instrumental variable. If there is more than one instrument then
the rule-of-thumb changes.) We now describe the steps behind this reasoning in more detail.

The first step is to use the distribution (12.82) to determine the threshold τ2. Formally, the goal is
to find the value of τ2 = µ2 at which the asymptotic size of a nominal 5% test is actually a given r (e.g.

1The term “nominal size” of a test is the official intended size – the size which would obtain under ideal circumstances. In
this context the test “Reject if |T | ≥ 1.96” has nominal size 0.05 as this would be the asymptotic rejection probability in the ideal
context of strong instruments.
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r = 0.15), thus P [|S1| ≥ 1.96] ≤ r . By some algebra and the quadratic formula the event
∣∣ξ(

1+ξ/µ
)∣∣< x is

the same as
µ2

4
−xµ<

(
ξ+ µ

2

)2
< µ2

4
+xµ.

The random variable between the inequalities is distributed χ2
1(µ2/4), a noncentral chi-square with one

degree of freedom and noncentrality parameter µ2/4. Thus

P [|S1| ≥ x] =P
[
χ2

1

(
µ2

4

)
≥ µ2

4
+xµ

]
+P

[
χ2

1

(
µ2

4

)
≤ µ2

4
−xµ

]
= 1−G

(
µ2

4
+xµ,

µ2

4

)
+G

(
µ2

4
−xµ,

µ2

4

)
(12.84)

where G (u,λ) is the distribution function of χ2
1(λ). Hence the desired threshold τ2 solves

1−G

(
τ2

4
+1.96τ,

τ2

4

)
+G

(
τ2

4
−1.96τ,

τ2

4

)
= r

or effectively

G

(
τ2

4
+1.96τ,

τ2

4

)
= 1− r

because τ2/4−1.96τ< 0 for relevant values of τ. The numerical solution (computed with the non-central
chi-square distribution function, e.g. ncx2cdf in MATLAB) is τ2 = 1.70 when r = 0.15. (That is, the
command

ncx2cdf(1.7/4+1.96∗sqrt(1.7),1,1.7/4)

yields the answer 0.8500. Stock and Yogo (2005) approximate the same calculation using simulation
methods and report τ2 = 1.82.)

This calculation means that if the reduced form satisfies µ2 ≥ 1.7, or equivalently if Γ2 ≥ 1.7/n, then
the asymptotic size of a nominal 5% test on the structural parameter is no larger than 15%.

To summarize the Stock-Yogo first step, we calculate the minimum value τ2 forµ2 sufficient to ensure
that the asymptotic size of a nominal 5% t-test does not exceed r , and find that τ2 = 1.70 for r = 0.15.

The Stock-Yogo second step is to find a critical value for the first-stage F statistic sufficient to reject
the hypothesis that H0 :µ2 = τ2 against H1 :µ2 > τ2. We now describe this procedure.

They suggest testingH0 :µ2 = τ2 at the 5% size using the first stage F statistic. If the F statistic is small
so that the test does not reject then we should be worried that the true value of µ2 is small and there is a
weak instrument problem. On the other hand if the F statistic is large so that the test rejects then we can
have some confidence that the true value of µ2 is sufficiently large that the weak instrument problem is
not too severe.

To implement the test we need to calculate an appropriate critical value. It should be calculated
under the null hypothesis H0 : µ2 = τ2. This is different from a conventional F test which is calculated
under H0 :µ2 = 0.

We start by calculating the asymptotic distribution of F. Since there is one regressor and one instru-
ment in our simplified setting the first-stage F statistic is the squared t-statistic from the reduced form.
Given our previous calculations it has the asymptotic distribution

F = γ̂2

s
(
γ̂
)2 =

(∑n
i=1 Zi Xi

)2(∑n
i=1 X 2

i

)
σ̂2

u
−→

d

(
µ+ξ2

)2 ∼χ2
1

(
µ2) .

This is a non-central chi-square distribution G(u,µ2) with one degree of freedom and non-centrality
parameter µ2.
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To test H0 : µ2 = τ2 against H1 : µ2 > τ2 we reject for F ≥ c where c is selected so that the asymptotic
rejection probability satisfies

P
[
F ≥ c |µ2 = τ2]→P

[
χ2

1

(
τ2)≥ c

]= 1−G
(
c,τ2)= 0.05

for τ2 = 1.70, or equivalently G (c,1.7) = 0.95. This is found by inverting the non-central chi-square quan-
tile function, e.g. the function Q(p,d) which solves G(Q(p,d),d) = p. We find that c =Q (0.95,1.7) = 8.7.
In MATLAB, this can be computed by ncx2inv(.95,1.7). Stock and Yogo (2005) report c = 9.0 because
they used τ2 = 1.82.

This means that if F > 8.7 we can reject H0 : µ2 = 1.7 against H1 : µ2 > 1.7 with an asymptotic 5% test.
In this context we should expect the IV estimator and tests to be reasonably well behaved. However, if
F < 8.7 then we should be cautious about the IV estimator, confidence intervals, and tests. This finding
led Staiger and Stock (1997) to propose the informal “rule of thumb” that the first stage F statistic should
exceed 10. Notice that F exceeding 8.7 (or 10) is equivalent to the reduced form t-statistic exceeding 2.94
(or 3.16), which is considerably larger than a conventional check if the t-statistic is “significant”. Equiv-
alently, the recommended rule-of-thumb for the case of a single instrument is to estimate the reduced
form and verify that the t-statistic for exclusion of the instrumental variable exceeds 3 in absolute value.

Does the proposed procedure control the asymptotic size of a 2SLS test? The first step has asymptotic
size bounded below r (e.g. 15%). The second step has asymptotic size 5%. By the Bonferroni bound (see
Section 9.20) the two steps together have asymptotic size bounded below r +0.05 (e.g. 20%). We can thus
call the Stock-Yogo procedure a rigorous test with asymptotic size r +0.05 (or 20%).

Our analysis has been confined to the case k2 = `2 = 1. Stock and Yogo (2005) also examine the case
`2 > 1 (which requires numerical simulation to solve) and both the 2SLS and LIML estimators. They show
that the F statistic critical values depend on the number of instruments `2 as well as the estimator. Their
critical values (calculated by simulation) are in their paper and posted on Motohiro Yogo’s webpage. We
report a subset in Table 12.4.

Table 12.4: 5% Critical Value for Weak Instruments, k2 = 1

Maximal Size r
2SLS LIML

`2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.4 9.0 6.7 5.5 16.4 9.0 6.7 5.5
2 19.9 11.6 8.7 7.2 8.7 5.3 4.4 3.9
3 22.3 12.8 9.5 7.8 6.5 4.4 3.7 3.3
4 24.6 14.0 10.3 8.3 5.4 3.9 3.3 3.0
5 26.9 15.1 11.0 8.8 4.8 3.6 3.0 2.8
6 29.2 16.2 11.7 9.4 4.4 3.3 2.9 2.6
7 31.5 17.4 12.5 9.9 4.2 3.2 2.7 2.5
8 33.8 18.5 13.2 10.5 4.0 3.0 2.6 2.4
9 36.2 19.7 14.0 11.1 3.8 2.9 2.5 2.3

10 38.5 20.9 14.8 11.6 3.7 2.8 2.5 2.2
15 50.4 26.8 18.7 12.2 3.3 2.5 2.2 2.0
20 62.3 32.8 22.7 17.6 3.2 2.3 2.1 1.9
25 74.2 38.8 26.7 20.6 3.8 2.2 2.0 1.8
30 86.2 44.8 30.7 23.6 3.9 2.2 1.9 1.7

Source: https://sites.google.com/site/motohiroyogo/research/econometrics.
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One striking feature about these critical values is that those for the 2SLS estimator are strongly in-
creasing in `2 while those for the LIML estimator are decreasing in `2. This means that when the number
of instruments `2 is large, 2SLS requires a much stronger reduced form (larger µ2) in order for inference
to be reliable, but this is not the case for LIML. This is direct evidence that LIML inference is less sensitive
to weak instruments than 2SLS. This makes a strong case for LIML over 2SLS, especially when `2 is large
or the instruments are potentially weak.

We now summarize the recommended Staiger-Stock/Stock-Yogo procedure for k1 ≥ 1, k2 = 1, and
`2 ≥ 1. The structural equation and reduced form equations are

Y1 = Z ′
1β1 +Y2β2 +e

Y2 = Z ′
1γ1 +Z ′

2γ2 +u.

The structural equation is estimated by either 2SLS or LIML. Let F be the F statistic for H0 : γ2 = 0 in the
reduced form equation. Let s(β̂2) be a standard error for β2 in the structural equation. The procedure is:

1. Compare F with the critical values c in Table 12.4 with the row selected to match the number of
excluded instruments `2 and the columns to match the estimation method (2SLS or LIML) and
the desired size r .

2. If F > c then report the 2SLS or LIML estimates with conventional inference.

The Stock-Yogo test can be implemented in Stata using the command estat firststage after ivregress
2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified (that is, without
the ‘,r’ option).

There are possible extensions to the Stock-Yogo procedure.
One modest extension is to use the information to convey the degree of confidence in the accuracy

of a confidence interval. Suppose in an application you have `2 = 5 excluded instruments and have
estimated your equation by 2SLS. Now suppose that your reduced form F statistic equals 12. You check
Table 12.4 and find that F = 12 is significant with r = 0.20. Thus we can interpret the conventional 2SLS
confidence interval as having coverage of 80% (or 75% if we make the Bonferroni correction). On the
other hand if F = 27 we would conclude that the test for weak instruments is significant with r = 0.10,
meaning that the conventional 2SLS confidence interval can be interpreted as having coverage of 90% (or
85% after Bonferroni correction). Thus the value of the F statistic can be used to calibrate the coverage
accuracy.

A more substantive extension, which we now discuss, reverses the steps. Unfortunately this discus-
sion will be limited to the case `2 = 1. First, use the reduced form F statistic to find a one-sided confi-
dence interval for µ2 of the form [µ2

L ,∞). Second, use the lower bound µ2
L to calculate a critical value c

for S1 such that the 2SLS test has asymptotic size bounded below 0.05. This produces better size con-
trol than the Stock-Yogo procedure and produces more informative confidence intervals for β2. We now
describe the steps in detail.

The first goal is to find a one-sided confidence interval for µ2. This is found by test inversion. As we
described earlier, for any τ2 we reject H0 : µ2 = τ2 in favor of H1 : µ2 > τ2 if F > c where G(c,τ2) = 0.95.
Equivalently, we reject if G(F,τ2) > 0.95. By the test inversion principle an asymptotic 95% confidence
interval [µ2

L ,∞) is the set of all values of τ2 which are not rejected. Since G(F,τ2) ≥ 0.95 for all τ2 in this
set, the lower bound µ2

L satisfies G(F,µ2
L) = 0.95, and is found numerically. In MATLAB, the solution is

mu2 when ncx2cdf(F,1,mu2) returns 0.95.
The second goal is to find the critical value c such that P (|S1| ≥ c) = 0.05 when µ2 = µ2

L . From (12.84)
this is achieved when

1−G

(
µ2

L

4
+ cµL ,

µ2
L

4

)
+G

(
µ2

L

4
− cµL ,

µ2
L

4

)
= 0.05. (12.85)
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This can be solved as

G

(
µ2

L

4
+ cµL ,

µ2
L

4

)
= 0.95.

(The third term on the left-hand-side of (12.85) is zero for all solutions so can be ignored.) Using the
non-central chi-square quantile function Q(p,d), this C equals

c =
Q

(
0.95,

µ2
L

4

)
− µ2

L
4

µL
.

For example, in MATLAB this is found as c=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt(mu2). 95% confi-
dence intervals for β2 are then calculated as β̂iv ± cs(β̂iv).

We can also calculate a p-value for the t-statistic T for β2. This is

p = 1−G

(
µ2

L

4
+|T |µL ,

µ2
L

4

)
+G

(
µ2

L

4
−|T |µL ,

µ2
L

4

)

where the third term equals zero if |T | ≥ µL/4. In MATLAB, for example, this can be calculated by the
commands

T1= mu2/4+abs(T)∗sqrt(mu2);
T2= mu2/4−abs(T)∗sqrt(mu2);
p=−ncx2cdf(T1,1,mu2/4)+ncx2cdf(T2,1,mu2/4);
These confidence intervals and p-values will be larger than the conventional intervals and p-values,

reflecting the incorporation of information about the strength of the instruments through the first-stage
F statistic. Also, by the Bonferroni bound these tests have asymptotic size bounded below 10% and the
confidence intervals have asymptotic converage exceeding 90%, unlike the Stock-Yogo method which
has size of 20% and coverage of 80%.

The augmented procedure suggested here, only for the `2 = 1 case, is

1. Find µ2
L which solves G

(
F,µ2

L

) = 0.95 . In MATLAB, the solution is mu2 when ncx2cdf(F,1,mu2)

returns 0.95.

2. Find c which solves G
(
µ2

L/4+ cµL ,µ2
L/4

)= 0.95. In MATLAB, the command is

c=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt(mu2)

3. Report the confidence interval β̂2 ± cs(β̂2) for β2.

4. For the t statistic T = (
β̂2 −β2

)
/s(β̂2) the asymptotic p-value is

p = 1−G

(
µ2

L

4
+|T |µL ,

µ2
L

4

)
+G

(
µ2

L

4
−|T |µL ,

µ2
L

4

)

which is computed in MATLAB by T1=mu2/4+abs(T)*sqrt(mu2); T2=mu2/4-abs(T)*sqrt(mu2);
and p=1-ncx2cdf(T1,1,mu2/4)+ncx2cdf(T2,1,mu2/4).

We have described an extension to the Stock-Yogo procedure for the case of one instrumental vari-
able `2 = 1. This restriction was due to the use of the analytic formula (12.85) for the asymptotic distribu-
tion which is only available when `2 = 1. In principle the procedure could be extended using simulation
or bootstrap methods but this has not been done to my knowledge.

To illustrate the Stock-Yogo and extended procedures let us return to the Card proximity example.
Take the IV estimates reported in the second column of Table 12.1 which used college proximity as a
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single instrument. The reduced form estimates for the endogenous variable education are reported in
the second column of Table 12.2. The excluded instrument college has a t-ratio of 4.2 which implies an
F statistic of 17.8. The F statistic exceeds the rule-of thumb of 10 so the structural estimates pass the
Stock-Yogo threshold. Based on their recommendation this means that we can interpret the estimates
conventionally. However, the conventional confidence interval, e.g. for the returns to education 0.132±
0.049×1.96 = [0.04, 0.23] , has an asymptotic coverage of 80% rather than the nominal 95% rate.

Now consider the extended procedure. Given F = 17.8 we calculate the lower bound µ2
L = 6.6. This

implies a critical value of C = 2.7. Hence an improved confidence interval for the returns to education
in this equation is 0.132±0.049×2.7 = [0.01, 0.26]. This is a wider confidence interval but has improved
asymptotic coverage of 90%. The p-value for β2 = 0 is p = 0.012.

Next, take the 2SLS estimates reported in the fourth column of Table 11.1 which use the two instru-
ments public and private. The reduced form equation is reported in column six of Table 12.2. An F
statistic for exclusion of the two instruments is F = 13.9 which exceeds the 15% size threshold for 2SLS
and all thresholds for LIML, indicating that the structural estimates pass the Stock-Yogo threshold test
and can be interpreted conventionally.

The weak instrument methods described here are important for applied econometrics as they dis-
cipline researchers to assess the quality of their reduced form relationships before reporting structural
estimates. The theory, however, has limitations and shortcomings, in particular the strong assumption of
conditional homoskedasticity. Despite this limitation, in practice researchers apply the Stock-Yogo rec-
ommendations to estimates computed with heteroskedasticity-robust standard errors. This is an active
area of research so the recommended methods may change in the years ahead.

12.39 Weak Instruments with k2 > 1

When there is more than one endogenous regressor (k2 > 1) it is better to examine the reduced form
as a system. Staiger and Stock (1997) and Stock and Yogo (2005) provided an analysis of this case and
constructed a test for weak instruments. The theory is considerably more involved than the k2 = 1 case
so we briefly summarize it here excluding many details, emphasizing their suggested methods.

The structural equation and reduced form equations are

Y1 = Z ′
1β1 +Y ′

2β2 +e

Y2 = Γ′12Z1 +Γ′22Z2 +u2.

As in the previous section we assume that the errors are conditionally homoskedastic.
Identification of β2 requires the matrix Γ22 to be full rank. A necessary condition is that each row of

Γ′22 is non-zero but this is not sufficient.
We focus on the size performance of the homoskedastic Wald statistic for the 2SLS estimator of β2.

For simplicity assume that the variance of e is known and normalized to one. Using representation
(12.32), the Wald statistic can be written as

W = e ′ Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2Y 2

(
Y ′

2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2Y 2

)−1 (
Y ′

2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2e

)
where Z̃ 2 = (I n −P 1) Z 2 and P 1 = Z 1

(
Z ′

1Z 1
)−1 Z ′

1.
Recall from Section 12.36 that Stock and Staiger model the excluded instruments Z2 as weak by set-

ting Γ22 = n−1/2C for some matrix C . In this framework we have the asymptotic distribution results

1

n
Z̃

′
2 Z̃ 2 −→

p
Q = E[

Z2Z ′
2

]−E[
Z2Z ′

1

](
E
[

Z1Z ′
1

])−1
E
[

Z1Z ′
2

]
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and
1p
n

Z̃
′
2e −→

d
Q1/2ξ0

where ξ0 is a matrix normal variate whose columns are independent N(0, I ). Furthermore, setting Σ =
E
[
u2u′

2

]
and C =Q1/2CΣ−1/2,

1p
n

Z̃
′
2Y 2 = 1

n
Z̃

′
2 Z̃ 2C + 1p

n
Z̃

′
2U 2 −→

d
Q1/2CΣ1/2 +Q1/2ξ2Σ

1/2

where ξ2 is a matrix normal variate whose columns are independent N(0, I ). The variables ξ0 and ξ2 are
correlated. Together we obtain the asymptotic distribution of the Wald statistic

W −→
d

S = ξ′0
(
C +ξ2

)(
C

′
C

)−1 (
C +ξ2

)′
ξ0.

Using the spectral decomposition, C
′
C = H ′ΛH where H ′H = I and Λ is diagonal. Thus we can write

S = ξ′0ξ2Λ
−1ξ

′
2ξ0 where ξ2 = C H ′ + ξ2H ′. The matrix ξ∗ = (ξ0,ξ2) is multivariate normal, so ξ∗′ξ∗ has

what is called a non-central Wishart distribution. It only depends on the matrix C through HC
′
C H ′ =Λ

which are the eigenvalues of C
′
C . Since S is a function of ξ∗ only through ξ

′
2ξ0 we conclude that S is a

function of C only through these eigenvalues.
This is a very quick derivation of a rather involved derivation but the conclusion drawn by Stock and

Yogo is that the asymptotic distribution of the Wald statistic is non-standard and a function of the model

parameters only through the eigenvalues of C
′
C and the correlations between the normal variates ξ0 and

ξ2. The worst-case can be summarized by the maximal correlation between ξ0 and ξ2 and the smallest

eigenvalue of C
′
C . For convenience they rescale the latter by dividing by the number of endogenous

variables. Define
G =C

′
C /k2 =Σ−1/2C ′QCΣ−1/2/k2

and
g =λmin (G) =λmin

(
Σ−1/2C ′QCΣ−1/2)/k2.

This can be estimated from the reduced-form regression

X2i = Γ̂′12Z1i + Γ̂′22Z2i + û2i .

The estimator is

Ĝ = Σ̂−1/2Γ̂′22

(
Z̃

′
2 Z̃ 2

)
Γ̂22Σ̂

−1/2/k2 = Σ̂−1/2
(
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(
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′
2 Z̃ 2

)−1
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′
2X 2

)
Σ̂−1/2/k2

Σ̂= 1

n −k

n∑
i=1

û2i û′
2i

ĝ =λmin
(
Ĝ

)
.

Ĝ is a matrix F -type statistic for the coefficient matrix Γ̂22.
The statistic ĝ was proposed by Cragg and Donald (1993) as a test for underidentification. Stock and

Yogo (2005) use it as a test for weak instruments. Using simulation methods they determined critical
values for ĝ similar to those for k2 = 1. For given size r > 0.05 there is a critical value c (reported in
the table below) such that if ĝ > c then the 2SLS (or LIML) Wald statistic W for β̂2 has asymptotic size
bounded below r . On the other hand, if ĝ ≤ c then we cannot bound the asymptotic size below r and we
cannot reject the hypothesis of weak instruments.
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Critical values (calculated by simulation) are reported in their paper and posted on Motohiro Yogo’s
webpage. We report a subset for the case k2 = 2 in Table 12.5. The methods and theory applies to the
cases k2 > 2 as well but those critical values have not been calculated. As for the k2 = 1 case the critical
values for 2SLS are dramatically increasing in `2. Thus when the model is over-identified, we need a large
value of ĝ to reject the hypothesis of weak instruments. This is a strong cautionary message to check the
ĝ statistic in applications. Furthermore, the critical values for LIML are generally decreasing in `2 (except
for r = 0.10 where the critical values are increasing for large `2). This means that for over-identified mod-
els LIML inference is less sensitive to weak instruments than 2SLS and may be the preferred estimation
method.

The Stock-Yogo test can be implemented in Stata using the command estat firststage after ivregress
2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified (that is, without
the ‘,r’ option). Critical values which control for size are only available for k2 ≤ 2. For for k2 > 2 critical
values which control for relative bias are reported.

Robust versions of the test have been proposed by Kleibergen and Paap (2006). These can be imple-
mented in Stata using the downloadable command ivreg2.

Table 12.5: 5% Critical Value for Weak Instruments, k2 = 2

Maximal Size r
2SLS LIML

`2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
2 7.0 4.6 3.9 3.6 7.0 4.6 3.9 3.6
3 13.4 8.2 6.4 5.4 5.4 3.8 3.3 3.1
4 16.9 9.9 7.5 6.3 4.7 3.4 3.0 2.8
5 19.4 11.2 8.4 6.9 4.3 3.1 2.8 2.6
6 21.7 12.3 9.1 7.4 4.1 2.9 2.6 2.5
7 23.7 13.3 9.8 7.9 3.9 2.8 2.5 2.4
8 25.6 14.3 10.4 8.4 3.8 2.7 2.4 2.3
9 27.5 15.2 11.0 8.8 3.7 2.7 2.4 2.2

10 29.3 16.2 11.6 9.3 3.6 2.6 2.3 2.1
15 38.0 20.6 14.6 11.6 3.5 2.4 2.1 2.0
20 46.6 25.0 17.6 13.8 3.6 2.4 2.0 1.9
25 55.1 29.3 20.6 16.1 3.6 2.4 1.97 1.8
30 63.5 33.6 23.5 18.3 4.1 2.4 1.95 1.7

Source: https://sites.google.com/site/motohiroyogo/research/econometrics.

12.40 Example: Acemoglu, Johnson, and Robinson (2001)

One particularly well-cited instrumental variable regression is in Acemoglu, Johnson, and Robinson
(2001) with additional details published in (2012). They are interested in the effect of political insti-
tutions on economic performance. The theory is that good institutions (rule-of-law, property rights)
should result in a country having higher long-term economic output than if the same country had poor
institutions. To investigate this question they focus on a sample of 64 former European colonies. Their
data is in the file AJR2001 on the textbook website.

The authors’ premise is that modern political institutions have been influenced by colonization. In
particular they argue that colonizing countries tended to set up colonies as either an “extractive state” or
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as a “migrant colony”. An extractive state was used by the colonizer to extract resources for the colonizing
country but was not largely settled by the European colonists. In this case the colonists had no incentive
to set up good political institutions. In contrast, if a colony was set up as a “migrant colony” then large
numbers of European settlers migrated to the colony to live. These settlers desired institutions similar
to those in their home country and hence had an incentive to set up good political institutions. The
nature of institutions is quite persistent over time so these 19th-century foundations affect the nature of
modern institutions. The authors conclude that the 19th-century nature of the colony is predictive of the
nature of modern institutions and hence modern economic growth.

To start the investigation they report an OLS regression of log GDP per capita in 1995 on a measure
of political institutions they call risk which is a measure of legal protection against expropriation. This
variable ranges from 0 to 10, with 0 the lowest protection against appropriation and 10 the highest. For
each country the authors take the average value of the index over 1985 to 1995 (the mean is 6.5 with a
standard deviation of 1.5). Their reported OLS estimates (intercept omitted) are

álog(GDP per Capita) = 0.52
(0.06)

risk. (12.86)

These estimates imply a 52% difference in GDP between countries with a 1-unit difference in risk.
The authors argue that the risk is endogenous since economic output influences political institutions

and because the variable risk is undoubtedly measured with error. These issues induce least-square bias
in different directions and thus the overall bias effect is unclear.

To correct for endogeneity bias the authors argue the need for an instrumental variable which does
not directly affect economic performance yet is associated with political institutions. Their innovative
suggestion was to use the mortality rate which faced potential European settlers in the 19th century.
Colonies with high expected mortality were less attractive to European settlers resulting in lower levels
of European migrants. As a consequence the authors expect such colonies to be more likely structured
as an extractive state rather than a migrant colony. To measure the expected mortality rate the authors
use estimates provided by historical research of the annualized deaths per 1000 soldiers, labeled mortal-
ity. (They used military mortality rates as the military maintained high-quality records.) The first-stage
regression is

risk = −0.61
(0.13)

log(mortality)+ û. (12.87)

These estimates confirm that 19th-century high mortality rates are associated with lower quality modern
institutions. Using log(mortality) as an instrument for risk, they estimate the structural equation using
2SLS and report

álog(GDP per Capita) = 0.94
(0.16)

risk. (12.88)

This estimate is much higher than the OLS estimate from (12.86). The estimate is consistent with a near
doubling of GDP due to a 1-unit difference in the risk index.

These are simple regressions involving just one right-hand-side variable. The authors considered a
range of other models. Included in these results are a reversal of a traditional finding. In a conventional
least squares regression two relevant variables for output are latitude (distance from the equator) and
africa (a dummy variable for countries from Africa) both of which are difficult to interpret causally. But
in the proposed instrumental variables regression the variables latitude and africa have much smaller –
and statistically insignificant – coefficients.
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To assess the specification we can use the Stock-Yogo and endogeneity tests. The Stock-Yogo test is
from the reduced form (12.87). The instrument has a t-ratio of 4.8 (or F = 23) which exceeds the Stock-
Yogo critical value and hence can be treated as strong. For an endogeneity test we take the least squares
residual û from this equation and include it in the structural equation and estimate by least squares. We
find a coefficient on û of −0.57 with a t-ratio of 4.7 which is highly significant. We conclude that the least
squares and 2SLS estimates are statistically different and reject the hypothesis that the variable risk is
exogenous for the GDP structural equation.

In Exercise 12.22 you will replicate and extend these results using the authors’ data.
This paper is a creative and careful use of instrumental variables. The creativity stems from the his-

torical analysis which lead to the focus on mortality as a potential predictor of migration choices. The
care comes in the implementation as the authors needed to gather country-level data on political insti-
tutions and mortality from distinct sources. Putting these pieces together is the art of the project.

12.41 Example: Angrist and Krueger (1991)

Another influential instrument variable regression is Angrist and Krueger (1991). Their concern, sim-
ilar to Card (1995), is estimation of the structural returns to education while treating educational attain-
ment as endogenous. Like Card, their goal is to find an instrument which is exogenous for wages yet has
an impact on education. A subset of their data in the file AK1991 on the textbook website.

Their creative suggestion was to focus on compulsory school attendance policies and their interac-
tion with birthdates. Compulsory schooling laws vary across states in the United States, but typically
require that youth remain in school until their sixteenth or seventeenth birthday. Angrist and Krueger
argue that compulsory schooling has a causal effect on wages – youth who would have chosen to drop
out of school stay in school for more years – and thus have more education which causally impacts their
earnings as adults.

Angrist and Krueger observe that these policies have differential impact on youth who are born early
or late in the school year. Students who are born early in the calendar year are typically older when they
enter school. Consequently when they attain the legal dropout age they have attended less school than
those born near the end of the year. This means that birthdate (early in the calendar year versus late)
exogenously impacts educational attainment and thus wages through education. Yet birthdate must be
exogenous for the structural wage equation as there is no reason to believe that birthdate itself has a
causal impact on a person’s ability or wages. These considerations together suggest that birthdate is a
valid instrumental variable for education in a causal wage equation.

Typical wage datasets include age but not birthdates. To obtain information on birthdate, Angrist
and Krueger used U.S. Census data which includes an individual’s quarter of birth (January-March, April-
June, etc.). They use this variable to construct 2SLS estimates of the return to education.

Their paper carefully documents that educational attainment varies by quarter of birth (as predicted
by the above discussion), and reports a large set of least squares and 2SLS estimates. We focus on two
estimates at the core of their analysis, reported in column (6) of their Tables V and VII. This involves data
from the 1980 census with men born in 1930-1939, with 329,509 observations. The first equation is

álog(wage) = 0.081
(0.016)

edu− 0.230
(0.026)

Black+ 0.158
(0.017)

urban+ 0.244
(0.005)

married (12.89)

where edu is years of education and Black, urban, and married are dummy variables indicating race
(1 if Black, 0 otherwise), lives in a metropolitan area, and if married. In addition to the reported coeffi-
cients the equation also includes as regressors nine year-of-birth dummies and eight region-of-residence
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dummies. The equation is estimated by 2SLS. The instrumental variables are the 30 interactions of three
quarter-of-birth times ten year-of-birth dummy variables.

This equation indicates an 8% increase in wages due to each year of education.
Angrist and Krueger observe that the effect of compulsory education laws are likely to vary across

states, so expand the instrument set to include interactions with state-of-birth. They estimate the fol-
lowing equation by 2SLS

álog(wage) = 0.083
(0.009)

edu− 0.233
(0.011)

Black+ 0.151
(0.009)

urban+ 0.244
(0.004)

married. (12.90)

This equation also adds fifty state-of-birth dummy variables as regressors. The instrumental variables
are the 180 interactions of quarter-of-birth times year-of-birth dummy variables, plus quarter-of-birth
times state-of-birth interactions.

This equation shows a similar estimated causal effect of education on wages as in (12.89). More
notably, the standard error is smaller in (12.90) suggesting improved precision by the expanded instru-
mental variable set.

However, these estimates seem excellent candidates for weak instruments and many instruments.
Indeed, this paper (published in 1991) helped spark these two literatures. We can use the Stock-Yogo
tools to explore the instrument strength and the implications for the Angrist-Krueger estimates.

We first take equation (12.89). Using the original Angrist-Krueger data we estimate the corresponding
reduced form and calculate the F statistic for the 30 excluded instruments. We find F = 4.8. It has an
asymptotic p-value of 0.000 suggesting that we can reject (at any significance level) the hypothesis that
the coefficients on the excluded instruments are zero. Thus Angrist and Krueger appear to be correct
that quarter of birth helps to explain educational attainment and are thus a valid instrumental variable
set. However, using the Stock-Yogo test, F = 4.8 is not high enough to reject the hypothesis that the
instruments are weak. Specifically, for `2 = 30 and 15% size the critical value for the F statistic is 45. The
actual value of 4.8 is far below 45. Since we cannot reject that the instruments are weak this indicates
that we cannot interpret the 2SLS estimates and test statistics in (12.89) as reliable.

Second, take (12.90) with the expanded regressor and instrument set. Estimating the correspond-
ing reduced form we find the F statistic for the 180 excluded instruments is F = 2.43 which also has an
asymptotic p-value of 0.000 indicating that we can reject at any significance level the hypothesis that
the excluded instruments have no effect on educational attainment. However, using the Stock-Yogo test
we also cannot reject the hypothesis that the instruments are weak. While Stock and Yogo did not cal-
culate the critical values for `2 = 180, the 2SLS critical values are increasing in `2 so we can use those
for `2 = 30 as a lower bound. The observed value of F = 2.43 is far below the level needed for signifi-
cance. Consequently the results in (12.90) cannot be viewed as reliable. In particular, the observation
that the standard errors in (12.90) are smaller than those in (12.89) should not be interpreted as evidence
of greater precision. Rather, they should be viewed as evidence of unreliability due to weak instruments.

When instruments are weak one constructive suggestion is to use LIML estimation rather than 2SLS.
Another constructive suggestion is to alter the instrument set. While Angrist and Krueger used a large
number of instrumental variables we can consider a smaller set. Take equation (12.89). Rather than
estimating it using the 30 interaction instruments consider using only the three quarter-of-birth dummy
variables. We report the reduced form estimates here:

êdu =− 1.57
(0.02)

Black+ 1.05
(0.01)

urban+ 0.225
(0.016)

married+ 0.050
(0.016)

Q2 + 0.101
(0.016)

Q3 + 0.142
(0.016)

Q4

(12.91)
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where Q2, Q3, and Q4 are dummy variables for birth in the 2nd , 3r d , and 4th quarter. The regression also
includes nine year-of-birth and eight region-of-residence dummy variables.

The reduced form coefficients in (12.91) on the quarter-of-birth dummies are instructive. The coeffi-
cients are positive and increasing, consistent with the Angrist-Krueger hypothesis that individuals born
later in the year achieve higher average education. Focusing on the weak instrument problem the F test
for exclusion of these three variables is F = 31. The Stock-Yogo critical value is 12.8 for `2 = 3 and a size of
15%, and is 22.3 for a size of 10%. Since F = 31 exceeds both these thresholds we can reject the hypothesis
that this reduced form is weak. Estimating the model by 2SLS with these three instruments we find

álog(wage) = 0.099
(0.021)

edu− 0.201
(0.033)

Black+ 0.139
(0.022)

urban+ 0.240
(0.006)

married. (12.92)

These estimates indicate a slightly larger (10%) causal impact of education on wages but with a larger
standard error. The Stock-Yogo analysis indicates that we can interpret the confidence intervals from
these estimates as having asymptotic coverage 85%.

While the original Angrist-Krueger estimates suffer due to weak instruments their paper is a very cre-
ative and thoughtful application of the natural experiment methodology. They discovered a completely
exogenous variation present in the world – birthdate – and showed how this has a small but measur-
able effect on educational attainment and thereby on earnings. Their crafting of this natural experiment
regression is clever and demonstrates a style of analysis which can successfully underlie an effective in-
strumental variables empirical analysis.

12.42 Programming

We now present Stata code for some of the empirical work reported in this chapter.
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Stata do File for Card Example

use Card1995.dta, clear
set more off
gen exp = age76 - ed76 - 6
gen exp2 = (exp^2)/100
* Drop observations with missing wage
drop if lwage76==.
* Table 12.1 regressions
reg lwage76 ed76 exp exp2 black reg76r smsa76r, r
ivregress 2sls lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4), r
ivregress 2sls lwage76 black reg76r smsa76r (ed76 exp exp2 = nearc4 age76 age2), r perfect
ivregress 2sls lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4a nearc4b), r
ivregress 2sls lwage76 black reg76r smsa76r (ed76 exp exp2 = nearc4a nearc4b age76 age2), r
perfect
ivregress liml lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4a nearc4b), r
* Table 12.2 regressions
reg lwage76 exp exp2 black reg76r smsa76r nearc4, r
reg ed76 exp exp2 black reg76r smsa76r nearc4, r
reg ed76 black reg76r smsa76r nearc4 age76 age2, r
reg exp black reg76r smsa76r nearc4 age76 age2, r
reg exp2 black reg76r smsa76r nearc4 age76 age2, r
reg ed76 exp exp2 black reg76r smsa76r nearc4a nearc4b, r
reg lwage76 ed76 exp exp2 smsa76r reg76r, r
reg lwage76 nearc4 exp exp2 smsa76r reg76r, r
reg ed76 nearc4 exp exp2 smsa76r reg76r, r

Stata do File for Acemoglu-Johnson-Robinson Example

use AJR2001.dta, clear
reg loggdp risk
reg risk logmort0
predict u, residual
ivregress 2sls loggdp (risk=logmort0)
reg loggdp risk u
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Stata do File for Angrist-Krueger Example

use AK1991.dta, clear
ivregress 2sls logwage black smsa married i.yob i.region (edu = i.qob#i.yob)
ivregress 2sls logwage black smsa married i.yob i.region i.state (edu =
i.qob#i.yob i.qob#i.state)
reg edu black smsa married i.yob i.region i.qob#i.yob
testparm i.qob#i.yob
reg edu black smsa married i.yob i.region i.state i.qob#i.yob i.qob#i.state
testparm i.qob#i.yob i.qob#i.state
reg edu black smsa married i.yob i.region i.qob
testparm i.qob
ivregress 2sls logwage black smsa married i.yob i.region (edu = i.qob)

_____________________________________________________________________________________________

12.43 Exercises

Exercise 12.1 Consider the single equation model Y = Zβ+e where Y and Z are both real-valued (1×1).
Let β̂ denote the IV estimator of β using as an instrument a dummy variable D (takes only the values 0
and 1). Find a simple expression for the IV estimator in this context.

Exercise 12.2 Take the linear model Y = X ′β+ e with E [e | X ] = 0. Suppose σ2(x) = E
[
e2 | X = x

]
is

known. Show that the GLS estimator of β can be written as an IV estimator using some instrument
Z . (Find an expression for Z .)

Exercise 12.3 Take the linear model Y = X ′β+ e. Let the OLS estimator for β be β̂ with OLS residual êi .
Let the IV estimator for β using some instrument Z be β̃ with IV residual ẽi = Yi − X ′

i β̃. If X is indeed
endogenous, will IV “fit” better than OLS in the sense that

∑n
i=1 ẽ2

i <
∑n

i=1 ê2
i , at least in large samples?

Exercise 12.4 The reduced form between the regressors X and instruments Z takes the form X = Γ′Z +u
where X is k×1, Z is `×1, and Γ is `×k. The parameter Γ is defined by the population moment condition
E
[

Z u′]= 0. Show that the method of moments estimator for Γ is Γ̂= (
Z ′Z

)−1 (
Z ′X

)
.

Exercise 12.5 In the structural model Y = X ′β+ e with X = Γ′Z +u and Γ `× k, ` ≥ k, we claim that
a necessary condition for β to be identified (can be recovered from the reduced form) is rank(Γ) = k.
Explain why this is true. That is, show that if rank(Γ) < k then β is not identified.

Exercise 12.6 For Theorem 12.3 establish that V̂ β −→p V β.

Exercise 12.7 Take the linear model Y = X ′β+e with E [e | X ] = 0 where X and β are 1×1.

(a) Show that E [X e] = 0 and E
[

X 2e
]= 0. Is Z = (X X 2)′ a valid instrument for estimation of β?

(b) Define the 2SLS estimator of β using Z as an instrument for X . How does this differ from OLS?
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Exercise 12.8 Suppose that price and quantity are determined by the intersection of the linear demand
and supply curves

Demand : Q = a0 +a1P +a2Y +e1

Supply : Q = b0 +b1P +b2W +e2

where income (Y ) and wage (W ) are determined outside the market. In this model are the parameters
identified?

Exercise 12.9 Consider the model Y = X ′β+ e with E [e | Z ] = 0 with Y scalar and X and Z each a k
vector. You have a random sample (Yi , Xi , Zi : i = 1, ...,n).

(a) Assume that X is exogenous in the sense that E [e | Z , X ] = 0. Is the IV estimator β̂iv unbiased?

(b) Continuing to assume that X is exogenous, find the conditional covariance matrix var
[
β̂iv | X , Z

]
.

Exercise 12.10 Consider the model

Y = X ′β+e

X = Γ′Z +u

E [Z e] = 0

E
[

Z u′]= 0

with Y scalar and X and Z each a k vector. You have a random sample (Yi , Xi , Zi : i = 1, ...,n). Take
the control function equation e = u′γ+ν with E [uν] = 0 and assume for simplicity that u is observed.
Inserting into the structural equation we find Y = Z ′β+u′γ+ν. The control function estimator (β̂, γ̂) is
OLS estimation of this equation.

(a) Show that E [Xν] = 0 (algebraically).

(b) Derive the asymptotic distribution of (β̂, γ̂) .

Exercise 12.11 Consider the structural equation

Y =β0 +β1X +β2X 2 +e (12.93)

with X ∈ R treated as endogenous so that E [X e] 6= 0. We have an instrument Z ∈ R which satisfies
E [e | Z ] = 0 so in particular E [e] = 0 , E [Z e] = 0 and E

[
Z 2e

]= 0.

(a) Should X 2 be treated as endogenous or exogenous?

(b) Suppose we have a scalar instrument Z which satisfies

X = γ0 +γ1Z +u (12.94)

with u independent of Z and mean zero.

Consider using (1, Z , Z 2) as instruments. Is this a sufficient number of instruments? Is (12.93)
just-identified, over-identified, or under-identified?

(c) Write out the reduced form equation for X 2. Under what condition on the reduced form parame-
ters (12.94) are the parameters in (12.93) identified?
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Exercise 12.12 Consider the structural equation and reduced form

Y =βX 2 +e

X = γZ +u

E [Z e] = 0

E [Z u] = 0

with X 2 treated as endogenous so that E
[

X 2e
] 6= 0. For simplicity assume no intercepts. Y , Z , and X are

scalar. Assume γ 6= 0. Consider the following estimator. First, estimate γ by OLS of X on Z and construct

the fitted values X̂i = γ̂Zi . Second, estimate β by OLS of Yi on
(
X̂i

)2
.

(a) Write out this estimator β̂ explicitly as a function of the sample.

(b) Find its probability limit as n →∞.

(c) In general, is β̂ consistent for β? Is there a reasonable condition under which β̂ is consistent?

Exercise 12.13 Consider the structural equation Y1 = Z ′
1β1 +Y ′

2β2 + e with E [Z e] = 0 where Y2 is k2 ×1
and treated as endogenous. The variables Z = (Z1, Z2) are treated as exogenous where Z2 is `2 ×1 and
`2 ≥ k2. You are interested in testing the hypothesis H0 :β2 = 0.

Consider the reduced form equation for Y1

Y1 = Z ′
1λ1 +Z ′

2λ2 +u1. (12.95)

Show how to test H0 using only the OLS estimates of (12.95).
Hint: This will require an analysis of the reduced form equations and their relation to the structural

equation.

Exercise 12.14 Take the linear instrumental variables equation Y1 = Z ′
1β1+Y ′

2β2+e with E [Z e] = 0 where
Z1 is k1 ×1, Y2 is k2 ×1, and Z is `×1, with ` ≥ k = k1 +k2. The sample size is n. Assume that Q Z Z =
E
[

Z Z ′]> 0 and QZ X = E[
Z X ′] has full rank k.

Suppose that only (Y1, Z1, Z2) are available and Y2 is missing from the dataset.
Consider the 2SLS estimator β̂1 of β1 obtained from the misspecified IV regression of Y1 on Z1 only,

using Z2 as an instrument for Z1.

(a) Find a stochastic decomposition β̂1 =β1+b1n +r1n where r1n depends on the error e and b1n does
not depend on the error e.

(b) Show that r1n →p 0 as n →∞.

(c) Find the probability limit of b1n and β̂1 as n →∞.

(d) Does β̂1 suffer from “omitted variables bias”? Explain. Under what conditions is there no omitted
variables bias?

(e) Find the asymptotic distribution as n →∞ of
p

n
(
β̂1 −β1 −b1n

)
.

Exercise 12.15 Take the linear instrumental variables equation Y1 = Zβ1 + Y2β2 + e with E [e | Z ] = 0
where both X and Z are scalar 1×1.

(a) Can the coefficients (β1,β2) be estimated by 2SLS using Z as an instrument for Y2?

Why or why not?
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(b) Can the coefficients (β1,β2) be estimated by 2SLS using Z and Z 2 as instruments?

(c) For the 2SLS estimator suggested in (b), what is the implicit exclusion restriction?

(d) In (b) what is the implicit assumption about instrument relevance?

[Hint: Write down the implied reduced form equation for Y2.]

(e) In a generic application would you be comfortable with the assumptions in (c) and (d)?

Exercise 12.16 Take a linear equation with endogeneity and a just-identified linear reduced form Y =
Xβ+e with X = γZ +u2 where both X and Z are scalar 1×1. Assume that E [Z e] = 0 and E [Z u2] = 0.

(a) Derive the reduced form equation Y = Zλ+u1. Show that β=λ/γ if γ 6= 0, and that E [Z u] = 0.

(b) Let λ̂ denote the OLS estimate from linear regression of Y on Z , and let γ̂ denote the OLS estimate
from linear regression of X on Z . Write θ = (λ,γ)′ and let θ̂ = (λ̂, γ̂)′. Define u = (u1,u2). Writep

n
(
θ̂−θ)

using a single expression as a function of the error u.

(c) Show that E [Z u] = 0.

(d) Derive the joint asymptotic distribution of
p

n
(
θ̂−θ)

as n →∞. Hint: DefineΩu = E[
Z 2uu′] .

(e) Using the previous result and the Delta Method find the asymptotic distribution of the Indirect
Least Squares estimator β̂= λ̂/γ̂.

(f) Is the answer in (e) the same as the asymptotic distribution of the 2SLS estimator in Theorem 12.2?

Hint: Show that
(

1 −β )
u = e and

(
1 −β )

Ωu

(
1
−β

)
= E[

Z 2e2
]

.

Exercise 12.17 Take the model Y = X ′β+ e with E [Z e] = 0 and consider the two-stage least squares
estimator. The first-stage estimate is least squares of X on Z with least squares fitted values X̂ . The
second-stage is least squares of Y on X̂ with coefficient estimator β̂ and least squares residuals êi =
Yi − X̂i β̂. Consider σ̂2 = 1

n

∑n
i=1 ê2

i as an estimator for σ2 = E[
e2

i

]
. Is this appropriate? If not, propose an

alternative estimator.

Exercise 12.18 You have two independent i.i.d. samples (Y1i , X1i , Z1i : i = 1, ...,n) and (Y2i , X2i , Z2i : i =
1, ...,n). The dependent variables Y1 and Y2 are real-valued. The regressors X1 and X2 and instruments
Z1 and Z2 are k-vectors. The model is standard just-identified linear instrumental variables

Y1 = X ′
1β1 +e1

E [Z1e1] = 0

Y2 = X ′
2β2 +e2

E [Z2e2] = 0.

For concreteness, sample 1 are women and sample 2 are men. You want to test H0 : β1 = β2, that the
two samples have the same coefficients.

(a) Develop a test statistic for H0.

(b) Derive the asymptotic distribution of the test statistic.
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(c) Describe (in brief) the testing procedure.

Exercise 12.19 You want to use household data to estimate β in the model Y = Xβ+e with X scalar and
endogenous, using as an instrument the state of residence.

(a) What are the assumptions needed to justify this choice of instrument?

(b) Is the model just identified or overidentified?

Exercise 12.20 The model is Y = X ′β+ e with E [Z e] = 0. An economist wants to obtain the 2SLS esti-
mates and standard errors for β. He uses the following steps

• Regresses X on Z , obtains the predicted values X̂ .

• Regresses Y on X̂ , obtains the coefficient estimate β̂ and standard error s(β̂) from this regression.

Is this correct? Does this produce the 2SLS estimates and standard errors?

Exercise 12.21 In the linear model Y = Xβ+e with X ∈R suppose σ2(x) = E[
e2 | X = x

]
is known. Show

that the GLS estimator of β can be written as an instrumental variables estimator using some instrument
Z . (Find an expression for Z .)

Exercise 12.22 You will replicate and extend the work reported in Acemoglu, Johnson, and Robinson
(2001). The authors provided an expanded set of controls when they published their 2012 extension and
posted the data on the AER website. This dataset is AJR2001 on the textbook website.

(a) Estimate the OLS regression (12.86), the reduced form regression (12.87), and the 2SLS regression
(12.88). (Which point estimate is different by 0.01 from the reported values? This is a common
phenomenon in empirical replication).

(b) For the above estimates calculate both homoskedastic and heteroskedastic-robust standard errors.
Which were used by the authors (as reported in (12.86)-(12.87)-(12.88)?)

(c) Calculate the 2SLS estimates by the Indirect Least Squares formula. Are they the same?

(d) Calculate the 2SLS estimates by the two-stage approach. Are they the same?

(e) Calculate the 2SLS estimates by the control variable approach. Are they the same?

(f) Acemoglu, Johnson, and Robinson (2001) reported many specifications including alternative re-
gressor controls, for example latitude and africa. Estimate by least squares the equation for log-
GDP adding latitude and africa as regressors. Does this regression suggest that latitude and africa
are predictive of the level of GDP?

(g) Now estimate the same equation as in (f) but by 2SLS using log(mortality) as an instrument for
risk. How does the interpretation of the effect of latitude and africa change?

(h) Return to our baseline model (without including latitude and africa). The authors’ reduced form
equation uses log(mortality) as the instrument, rather than, say, the level of mortality. Estimate
the reduced form for risk with mortality as the instrument. (This variable is not provided in the
dataset so you need to take the exponential of log(mortality).) Can you explain why the authors
preferred the equation with log(mortality)?
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(i) Try an alternative reduced form including both log(mortality) and the square of log(mortality).
Interpret the results. Re-estimate the structural equation by 2SLS using both log(mortality) and
its square as instruments. How do the results change?

(j) For the estimates in (i) are the instruments strong or weak using the Stock-Yogo test?

(k) Calculate and interpret a test for exogeneity of the instruments.

(l) Estimate the equation by LIML using the instruments log(mortality) and the square of log(mortality).

Exercise 12.23 In Exercise 12.22 you extended the work reported in Acemoglu, Johnson, and Robinson
(2001). Consider the 2SLS regression (12.88). Compute the standard errors both by the asymptotic for-
mula and by the bootstrap using a large number (10,000) of bootstrap replications. Re-calculate the
bootstrap standard errors. Comment on the reliability of bootstrap standard errors for IV regression.

Exercise 12.24 You will replicate and extend the work reported in the chapter relating to Card (1995).
The data is from the author’s website and is posted as Card1995. The model we focus on is labeled
2SLS(a) in Table 12.1 which uses public and private as instruments for edu. The variables you will need
for this exercise include lwage76, ed76 , age76, smsa76r, reg76r, nearc2, nearc4, nearc4a, nearc4b. See the
description file for definitions. Experience is not in the dataset, so needs to be generated as age−edu−6.

(a) First, replicate the reduced form regression presented in the final column of Table 12.2, and the
2SLS regression described above (using public and private as instruments for edu) to verify that
you have the same variable defintions.

(b) Try a different reduced form model. The variable nearc2 means “grew up near a 2-year college”.
See if adding it to the reduced form equation is useful.

(c) Try more interactions in the reduced form. Create the interactions nearc4a*age76 and nearc4a*age762/100,
and add them to the reduced form equation. Estimate this by least squares. Interpret the coeffi-
cients on the two new variables.

(d) Estimate the structural equation by 2SLS using the expanded instrument set

{nearc4a, nearc4b, nearc4a*age76, nearc4a*age762/100}.

What is the impact on the structural estimate of the return to schooling?

(e) Using the Stock-Yogo test are the instruments strong or weak?

(f) Test the hypothesis that edu is exogenous for the structural return to schooling.

(g) Re-estimate the last equation by LIML. Do the results change meaningfully?

Exercise 12.25 In Exercise 12.24 you extended the work reported in Card (1995). Now, estimate the IV
equation corresponding to the IV(a) column of Table 12.1 which is the baseline specification considered
in Card. Use the bootstrap to calculate a BC percentile confidence interval. In this example should we
also report the bootstrap standard error?

Exercise 12.26 You will extend Angrist and Krueger (1991) using the data file AK1991 on the textbook
website.. Their Table VIII reports estimates of an analog of (12.90) for the subsample of 26,913 Black
men. Use this sub-sample for the following analysis.
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(a) Estimate an equation which is identical in form to (12.90) with the same additional regressors
(year-of-birth, region-of-residence, and state-of-birth dummy variables) and 180 excluded instru-
mental variables (the interactions of quarter-of-birth times year-of-birth dummy variables and
quarter-of-birth times state-of-birth interactions) but use the subsample of Black men. One re-
gressor must be omitted to achieve identification. Which variable is this?

(b) Estimate the reduced form for the above equation by least squares. Calculate the F statistic for the
excluded instruments. What do you conclude about the strength of the instruments?

(c) Repeat, estimating the reduced form for the analog of (12.89) which has 30 excluded instrumental
variables and does not include the state-of-birth dummy variables in the regression. What do you
conclude about the strength of the instruments?

(d) Repeat, estimating the reduced form for the analog of (12.92) which has only 3 excluded instru-
mental variables. Are the instruments sufficiently strong for 2SLS estimation? For LIML estima-
tion?

(e) Estimate the structural wage equation using what you believe is the most appropriate set of re-
gressors, instruments, and the most appropriate estimation method. What is the estimated return
to education (for the subsample of Black men) and its standard error? Without doing a formal hy-
pothesis test, do these results (or in which way?) appear meaningfully different from the results for
the full sample?

Exercise 12.27 In Exercise 12.26 you extended the work reported in Angrist and Krueger (1991) by es-
timating wage equations for the subsample of Black men. Re-estimate equation (12.92) for this group
using as instruments only the three quarter-of-birth dummy variables. Calculate the standard error for
the return to education by asymptotic and bootstrap methods. Calculate a BC percentile interval. In this
application of 2SLS is it appropriate to report the bootstrap standard error?
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