Chapter I 8

Simultaneous-Equation

Models

In this and the following two chapters we discuss the simultaneous-equation models. In
particular, we discuss their special features, their estimation, and some of the statistical
problems associated with them.

18.1 The Nature of Simultaneous-Equation Models

In Parts 1 to 3 of this text we were concerned exclusively with single-equation models, i.e.,
models in which there was a single dependent variable ¥ and one or more explanatory vari-
ables, the X’s. In such models the emphasis was on estimating and/or predicting the aver-
age value of Y conditional upon the fixed values of the X variables. The cause-and-effect
relationship, if any, in such models therefore ran from the X’s to the Y.

But in many situations, such a one-way or unidirectional cause-and-effect relationship is
not meaningful. This occurs if Y is determined by the X’s, and some of the X’s are, in turn,
determined by Y. In short, there is a two-way, or simultaneous, relationship between Y and
(some of) the X’s, which makes the distinction between dependent and explanatory vari-
ables of dubious value. It is better to lump together a set of variables that can be determined
simultaneously by the remaining set of variables—precisely what is done in simultaneous-
equation models. In such models there is more than one equation—one for each of the
mutually, or jointly, dependent or endogenous variables.! And unlike the single-equation
models, in the simultaneous-equation models one may not estimate the parameters of a
single equation without taking into account information provided by other equations in the
system.

What happens if the parameters of each equation are estimated by applying, say, the
method of ordinary least squares (OLS), disregarding other equations in the system? Recall
that one of the crucial assumptions of the method of OLS is that the explanatory X variables
are either nonstochastic or, if stochastic (random), distributed independently of the sto-
chastic disturbance term. If neither of these conditions is met, then, as shown later, the
least-squares estimators are not only biased but also inconsistent; that is, as the sample size

TIn the context of the simultaneous-equation models, the jointly dependent variables are called
endogenous variables and the variables that are truly nonstochastic or can be so regarded are
called the exogenous, or predetermined, variables. (More on this in Chapter 19.)
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674 Part Four Simultaneous-Equation Models and Time Series Econometrics

increases indefinitely, the estimators do not converge to their true (population) values.
Thus, in the following hypothetical system of equations,?

Y1 = Bio + BiaYoi + yu X +uy; (18.1.1)
Y2i = Boo + B Yii + yar X1 +uy (18.1.2)

where Y| and Y, are mutually dependent, or endogenous, variables and X is an exogenous
variable and where u; and u, are the stochastic disturbance terms, the variables Y; and Y,
are both stochastic. Therefore, unless it can be shown that the stochastic explanatory vari-
able Y in Eq. (18.1.1) is distributed independently of #; and the stochastic explanatory
variable Y; in Eq. (18.1.2) is distributed independently of u,, application of the classical
OLS to these equations individually will lead to inconsistent estimates.

In the remainder of this chapter we give a few examples of simultaneous-equation mod-
els and show the bias involved in the direct application of the least-squares method to such
models. After discussing the so-called identification problem in Chapter 19, in Chapter 20
we discuss some of the special methods developed to handle the simultaneous-equation
models.

18.2 Examples of Simultaneous-Equation Models

EXAMPLE 18.1
Demand-and-
Supply Model

As is well known, the price P of a commodity and the quantity Q sold are determined by
the intersection of the demand-and-supply curves for that commodity. Thus, assuming for
simplicity that the demand-and-supply curves are linear and adding the stochastic distur-
bance terms u; and up, we may write the empirical demand-and-supply functions as:

Demand function: d=ao+a1Pr+uy a1 <0 (18.2.1)
Supply function: Qi = Bo + B1 Pt + Uyt B1 >0 (18.2.2)
Equilibrium condition: ~ Qf = Q}

where Q¢ = quantity demanded
Q° = quantity supplied
t =time

and the «'s and g’s are the parameters. A priori, 1 is expected to be negative (down-
ward-sloping demand curve), and g, is expected to be positive (upward-sloping supply
curve).

Now it is not too difficult to see that P and Q are jointly dependent variables. If, for
example, uy; in Eq. (18.2.1) changes because of changes in other variables affecting Q¢
(such as income, wealth, and tastes), the demand curve will shift upward if uy; is positive
and downward if uy; is negative. These shifts are shown in Figure 18.1.

As the figure shows, a shift in the demand curve changes both P and Q. Similarly, a
change in uy; (because of strikes, weather, import or export restrictions, etc.) will shift
the supply curve, again affecting both P and Q. Because of this simultaneous dependence
between Q and B, uy; and P in Eq. (18.2.1) and uy; and P; in Eq. (18.2.2) cannot be
independent. Therefore, a regression of Q on P as in Eq. (18.2.1) would violate an
important assumption of the classical linear regression model, namely, the assumption of
no correlation between the explanatory variable(s) and the disturbance term.

’These economical but self-explanatory notations will be generalized to more than two equations in
Chapter 19.
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EXAMPLE 18.1 FIGURE 18.1

Interdependence of price and quantity.
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EXAMPLE 18.2 Consider the simple Keynesian model of income determination:

Keynesian Model Consumption function: ~ Ci=pfo+p1Ye+ur O0<pr <1 (18.2.3)
of Income
Dfetermination Income identity: Yi=Ci+ It (= Sp) (18.2.4)
where C = consumption expenditure

Y =income

| = investment (assumed exogenous)

§ = savings

t =time

u = stochastic disturbance term
Bo and By = parameters

The parameter By is known as the marginal propensity to consume (MPC) (the amount
of extra consumption expenditure resulting from an extra dollar of income). From eco-
nomic theory, B is expected to lie between 0 and 1. Equation (18.2.3) is the (stochastic)
consumption function; and Eq. (18.2.4) is the national income identity, signifying that total
income is equal to total consumption expenditure plus total investment expenditure, it

(Continued)
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EXAMPLE 18.2
(Continued)

FIGURE 18.2
Keynesian model
of income
determination.

being understood that total investment expenditure is equal to total savings. Diagrammat-
ically, we have Figure 18.2.

From the postulated consumption function and Figure 18.2 it is clear that C and Y
are interdependent and that Y; in Eq. (18.2.3) is not expected to be independent of the
disturbance term because when u; shifts (because of a variety of factors subsumed in the
error term), then the consumption function also shifts, which, in turn, affects Y:. Therefore,
once again the classical least-squares method is inapplicable to Eq. (18.2.3). If applied, the
estimators thus obtained will be inconsistent, as we shall show later.
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EXAMPLE 18.3
Wage—Price
Models

Consider the following Phillips-type model of money-wage and price determination:
Wtzao +Ol1UNt+Ol2Pt+U1t (18.2.5)

Pe=Bo+ B Wi+ B2Re + B3 M + uz (18.2.6)

where W = rate of change of money wages
UN = unemployment rate, %
P = rate of change of prices

R = rate of change of cost of capital

M = rate of change of price of imported raw material
t =time

u1, Uy = stochastic disturbances

Since the price variable P enters into the wage equation and the wage variable W enters
into the price equation, the two variables are jointly dependent. Therefore, these stochas-
tic explanatory variables are expected to be correlated with the relevant stochastic distur-
bances, once again rendering the classical OLS method inapplicable to estimate the
parameters of the two equations individually.
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EXAMPLE 18.4  The celebrated IS, or goods market equilibrium, model of macroeconomics? in its non-

The IS Model of
Macroeconomics

FIGURE 18.3
The IS curve.

stochastic form can be expressed as:

Consumption function: Ce=Bo+ B VYar 0<p <1 (18.2.7)
Tax function: Ti = oo +a1Ys O<ay <1 (18.2.8)
Investment function: le=yo+nire (18.2.9)
Definition: Yar =Y —T; (18.2.10)
Government expenditure: G=G (18.2.11)
National income identity: Ye=Ci+ It + G (18.2.12)

where Y = national income
C = consumption spending
| = planned or desired net investment
G = given level of government expenditure
T = taxes
Yy = disposable income
r = interest rate

If you substitute Egs. (18.2.10) and (18.2.8) into Eq. (18.2.7) and substitute the result-
ing equation for C and Egs. (18.2.9) and (18.2.11) into Eq. (18.2.12), you should obtain
the IS equation:

Yo =m0+ mirt (18.2.13)
where To = Bo —aof1 +vo+ G
1-61(—a)
: (18.2.14)
S =1 (1 —aq)

Equation (18.2.13) is the equation of the IS, or goods market equilibrium, that is, it gives
the combinations of the interest rate and level of income such that the goods market
clears or is in equilibrium. Geometrically, the IS curve is shown in Figure 18.3.

r

Interest rate

IS

Income

(Continued)

3“The goods market equilibrium schedule, or IS schedule, shows combinations of interest rates and
levels of output such that planned spending equals income.” See Rudiger Dornbusch and Stanley
Fischer, Macroeconomics, 3d ed., McGraw-Hill, New York, 1984, p. 102. Note that for simplicity we
have assumed away the foreign trade sector.
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EXAMPLE 18.4
(Continued)

What would happen if we were to estimate, say, the consumption function (18.2.7) in
isolation? Could we obtain unbiased and/or consistent estimates of Bo and B;? Such a
result is unlikely because consumption depends on disposable income, which depends on
national income Y, but the latter depends on r and G as well as the other parameters
entering in mo. Therefore, unless we take into account all these influences, a simple
regression of C on Yy is bound to give biased and/or inconsistent estimates of 8o and ;.

EXAMPLE 18.5
The LM Model

FIGURE 18.4
The LM curve.

The other half of the famous IS-LM paradigm is the LM, or money market equilibrium, re-
lation, which gives the combinations of the interest rate and level of income such that the
money market is cleared, that is, the demand for money is equal to its supply. Alge-
braically, the model, in the nonstochastic form, may be expressed as:

Money demand function: M? = a+ bY; —cry (18.2.15)
Money supply function: M; =M (18.2.16)
Equilibrium condition: Mg = M (18.2.17)

where Y =income, r = interest rate, and M = assumed level of money supply, say,
determined by the Fed.

Equating the money demand and supply functions and simplifying, we obtain the LM
equation:

Ytz)»o—{—)ql\;l-f-)»zl’t (18.2.18)
where
Ao = —G/b
M =1/b (18.2.19)
A2=c/b
For a given M = M, the LM curve representing the relation (18.2.18) is as shown in
Figure 18.4.

The IS and LM curves show, respectively, that a whole array of interest rates is consis-
tent with goods market equilibrium and a whole array of interest rates is compatible with
equilibrium in the money market. Of course, only one interest rate and one level of
income will be consistent simultaneously with the two equilibria. To obtain these, all that
needs to be done is to equate Egs. (18.2.13) and (18.2.18). In Exercise 18.4 you are asked
to show the level of the interest rate and income that is simultaneously compatible with
the goods and money market equilibrium.

.
LM(M = M)

Interest rate

Income
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EXAMPLE 18.6 An extensive use of simultaneous-equation models has been made in the econometric
Econometric models built by several econometricians. An early pioneer in this field was Professor
Models Lawrence Klein of the Wharton School of the University of Pennsylvania. His initial model,

known as Klein’s model |, is as follows:

Consumption function: Ct=PBo+ B1Pt+ Bo2(W + W) + B3 Pr_1 + Ure

Investment function: It = Ba+ Bs Pt + Be Pr—1 + B7Ki—1 + Uzt
Demand for labor: Wi = Bg + Bo(Y + T — W),
+B10(Y + T — W1 + prit + ust
Identity: Ye+Te=Ce4 e + Gy
Identity: Ye= W/ + W, + P
Identity: Ki= K1+ 1t
where C = consumption expenditure

| = investment expenditure
G = government expenditure
P = profits

W = private wage bill

W’ = government wage bill
K = capital stock

T = taxes
Y = income after tax
t =time

Ui, Uz, and us = stochastic disturbances*

(18.2.20)

In the preceding model the variables C, I, W, ¥, P, and K are treated as jointly dependent,
or endogenous, variables and the variables P;_1, K1, and Y;_; are treated as predeter-
mined.> In all, there are six equations (including the three identities) to study the interde-

pendence of six endogenous variables.

In Chapter 20 we shall see how such econometric models are estimated. For the time
being, note that because of the interdependence among the endogenous variables, in
general they are not independent of the stochastic disturbance terms, which therefore
makes it inappropriate to apply the method of OLS to an individual equation in the sys-
tem. As shown in Section 18.3, the estimators thus obtained are inconsistent; they do not
converge to their true population values even when the sample size is very large.

18.3 The Simultaneous-Equation Bias:
Inconsistency of OLS Estimators

As stated previously, the method of least squares may not be applied to estimate a single
equation embedded in a system of simultaneous equations if one or more of the explana-
tory variables are correlated with the disturbance term in that equation because the estima-
tors thus obtained are inconsistent. To show this, let us revert to the simple Keynesian

4L. R. Klein, Economic Fluctuations in the United States, 1921-1941, John Wiley & Sons, New York, 1950.

>The model builder will have to specify which of the variables in a model are endogenous and which
are predetermined. K;_1 and Y;_q are predetermined because at time ¢ their values are known. (More

on this in Chapter 19.)
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model of income determination given in Example 18.2. Suppose that we want to estimate
the parameters of the consumption function (18.2.3). Assuming that E(u,) =0,
E(u?) = o2, E(usu4 ;) = 0 (for j # 0),and cov (1, u,) = 0, which are the assumptions of
the classical linear regression model, we first show that ¥; and u, in (18.2.3) are correlated
and then prove that 31 is an inconsistent estimator of ;.

To prove that Y; and u, are correlated, we proceed as follows. Substitute Eq. (18.2.3) into
Eq. (18.2.4) to obtain

Yi =B+ B1Y +u; + 1,
that is,

Bo 1 1

Y, = I,
R

(18.3.1)

Now

o n
1-8 1-5
where use is made of the fact that £(u,) = 0 and that /, being exogenous, or predetermined

(because it is fixed in advance), has as its expected value /;.
Therefore, subtracting Eq. (18.3.2) from Eq. (18.3.1) results in

E(Y,) = I (18.3.2)

Uy

i — E(Y;) = — 7 (18.3.3)
Moreover,
uy — E(uy) = uy (Why?) (18.3.4)
whence
cov (¥;, u;) = E[Y, — E(Y)][u; — E(uy)]
E(u7)
= 1_—/31 from Egs. (18.3.3) and (18.3.4) (18.3.5)
o2
C1-5
Since o2 is positive by assumption (why?), the covariance between Y and u given in

Eq. (18.3.5) is bound to be different from zero.® As a result, ¥; and u, in Eq. (18.2.3) are ex-
pected to be correlated, which violates the assumption of the classical linear regression
model that the disturbances are independent or at least uncorrelated with the explanatory
variables. As noted previously, the OLS estimators in this situation are inconsistent.

To show that the OLS estimator ﬁl is an inconsistent estimator of 8; because of corre-
lation between Y; and u,, we proceed as follows:

(G- O, - T)
X -y
_ DI

X

_ 2 Cn

Y

81t will be greater than zero as long as 1, the MPC, lies between 0 and 1, and it will be negative if 8

is greater than unity. Of course, a value of MPC greater than unity would not make much economic
sense. In reality therefore the covariance between Y; and u; is expected to be positive.

[

(18.3.6)




Chapter 18  Simultaneous-Equation Models 681

where the lowercase letters, as usual, indicate deviations from the (sample) mean values.
Substituting for C; from Eq. (18.2.3), we obtain

ho_ 2(130+ﬁ1Yt +ut)yt
p1 = 52
Lz u’ (18.3.7)
— B+ Yilly
vt

where in the last step use is made of the fact that }_y, =0 and (}_ Y,»,/> 1y} =1
(why?).
If we take the expectation of Eq. (18.3.7) on both sides, we obtain

E(B)=p +E [ZZ'V;Z’} (18.3.8)

Unfortunately, we cannot evaluate E£(}_ y,u,/ Y y?) since the expectations operator is a lin-
ear operator. [Note: E(A/B) # E(A)/E(B).] But intuitively it should be clear that unless
the term (3" y,u,/ Y y?) is zero, B is a biased estimator of 8. But have we not shown in
Eq. (18.3.5) that the covariance between ¥ and u is nonzero and therefore would A not be bi-
ased? The answer is, not quite, since cov (Y;, u,), a population concept, is not quite Y y,u,,
which is a sample measure, although as the sample size increases indefinitely the latter will
tend toward the former. But if the sample size increases indefinitely, then we can resort to the
concept of consistent estimator and find out what happens to A, as n, the sample size,
increases indefinitely. In short, when we cannot explicitly evaluate the expected value of an
estimator, as in Eq. (18.3.8), we can turn our attention to its behavior in the large sample.

Now an estimator is said to be consistent if its probability limit,” or plim for short, is
equal to its true (population) value. Therefore, to show that Bi of Eq. (18.3.7) is inconsis-
tent, we must show that its plim is not equal to the true ;. Applying the rules of probability
limit to Eq. (18.3.7), we obtain:®

plim (1) = plim (B,) + plim (Zytut>

Yt

: (X vui/n
= plim (B;) + plim (th/n)

N plim (Z y,u,/n)
plim (3 y? /n)

where in the second step we have divided Y y,u, and " y? by the total number of obser-
vations in the sample 7 so that the quantities in the parentheses are now the sample covari-
ance between Y and u and the sample variance of Y, respectively.

In words, Eq. (18.3.9) states that the probability limit of B is equal to true B; plus the ratio
of the plim of the sample covariance between Y and u to the plim of the sample variance of Y.
Now as the sample size n increases indefinitely, one would expect the sample covariance be-
tween Y and u to approximate the true population covariance E[Y; — E(Y:)][u; — E(u,)],
which from Eq. (18.3.5) is equal to [0 /(1 — B1)]. Similarly, as z tends to infinity, the sample

(18.3.9)

’See Appendix A for the definition of probability limit.

8As stated in Appendix A, the plim of a constant (for example, 1) is the same constant and the
plim of (A/B) = plim (A)/plim (B). Note, however, that E(A/B) # E(A)/E(B).
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variance of Y will approximate its population variance, say 2. Therefore, Eq. (18.3.9) may
be written as

o?/(1 = Br)
0_2
v (18.3.10)

Ch e (2)
-+ =5 (5

Giventhat0 < f; < 1 and that o2 and o2 are both positive, it is obvious from Eq. (18.3.10)
that plim (31) will always be greater than f§;; that is, 51 will overestimate the true ;. In
other words, ,3 | is a biased estimator, and the bias will not disappear no matter how large
the sample size.

plim (1) = B1 +

18.4 The Simultaneous-Equation Bias: A Numerical Example

To demonstrate some of the points made in the preceding section, let us return to the sim-
ple Keynesian model of income determination given in Example 18.2 and carry out the fol-
lowing Monte Carlo study.'® Assume that the values of investment / are as shown in
column 3 of Table 18.1. Further assume that

E(u,)=0
E(uiuj) =0 (J#0)
var (u,) = o> = 0.04
COV(U[, 1[) = 0

The u, thus generated are shown in column 4.

For the consumption function (18.2.3) assume that the values of the true parameters are
known and are By = 2 and B; = 0.8.

From the assumed values of By and B, and the generated values of u, we can generate
the values of income Y; from Eq. (18.3.1), which are shown in column 1 of Table 18.1.
Once Y; are known, and knowing By, B, and u,, one can easily generate the values of con-
sumption C; from Eq. (18.2.3). The C’s thus generated are given in column 2.

Since the true By and B, are known, and since our sample errors are exactly the same as
the “true” errors (because of the way we designed the Monte Carlo study), if we use the
data of Table 18.1 to regress C; on Y; we should obtain 8y = 2 and §; = 0.8, if OLS were
unbiased. But from Eq. (18.3.7) we know that this will not be the case if the regressor Y;
and the disturbance u, are correlated. Now it is not too difficult to verify from our data that
the (sample) covariance between Y, and u, is Y y,u, = 3.8 and that Y y? = 184. Then, as
Eq. (18.3.7) shows, we should have
Z Yily

>yt
084+ 38 (18.4.1)
184

= 0.82065
That is, B; is upward-biased by 0.02065.

Br=p+

°In general, however, the direction of the bias will depend on the structure of the particular model
and the true values of the regression coefficients.

10This is borrowed from Kenneth ). White, Nancy G. Horsman, and Justin B. Wyatt, SHAZAM: Computer
Handbook for Econometrics for Use with Basic Econometrics, McGraw-Hill, New York, 1985, pp. 131-134.
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Y Ct Iy ue
M 2 3 ()
18.15697 16.15697 2.0 —0.3686055
19.59980 17.59980 2.0 —0.8004084E-01
21.93468 19.73468 2.2 0.1869357
21.55145 19.35145 2.2 0.1102906
21.88427 19.48427 2.4 —0.2314535E-01
22.42648 20.02648 2.4 0.8529544E-01
25.40940 22.80940 2.6 0.4818807
22.69523 20.09523 2.6 —0.6095481E-01
24.36465 21.56465 2.8 0.7292983E-01
24.39334 21.59334 2.8 0.7866819E-01
24.09215 21.09215 3.0 —0.1815703
24.87450 21.87450 3.0 —0.2509900E-01
25.31580 22.11580 3.2 —0.1368398
26.30465 23.10465 3.2 0.6092946E-01
25.78235 22.38235 34 —0.2435298
26.08018 22.68018 34 —0.1839638
27.24440 23.64440 3.6 —0.1511200
28.00963 24.40963 3.6 0.1926739E-02
30.89301 27.09301 3.8 0.3786015
28.98706 25.18706 3.8 —0.2588852E-02

Source: Kenneth J. White, Nancy G. Horsman, and Justin B. Wyatt, SHAZAM: Computer Handbook for Econometrics for Use
with Damodar Gujarati: Basic Econometrics, September 1985, p. 132.

Now let us regress C; on Y;, using the data given in Table 18.1. The regression results
are

C,= 14940 + 0.82065Y,
se = (0.35413)  (0.01434) (18.4.2)
t=(42188)  (57.209) R? = 0.9945

As expected, the estimated B is precisely the one predicted by Eq. (18.4.1). In passing,
note that the estimated S too is biased.

In general, the amount of the bias in ,31 depends on B, 0% and var (Y) and, in particular,
on the degree of covariance between Y and u.!' As Kenneth White et al. note, “This is what
simultaneous equation bias is all about. In contrast to single equation models, we can no
longer assume that variables on the right hand side of the equation are uncorrelated with the
error term.”!? Bear in mind that this bias remains even in large samples.

In view of the potentially serious consequences of applying OLS in simultaneous-
equation models, is there a test of simultaneity that can tell us whether in a given instance
we have the simultaneity problem? One version of the Hausman specification test can be
used for this purpose, which we discuss in Chapter 19.

"See Eq. (18.3.5).
20p. cit., pp. 133-134.
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Summary and . In contrast to single-equation models, in simultaneous-equation models more than one
dependent, or endogenous, variable is involved, necessitating as many equations as the

Conclusions :
number of endogenous variables.

2. A unique feature of simultaneous-equation models is that the endogenous variable (i.e.,
regressand) in one equation may appear as an explanatory variable (i.e., regressor) in an-
other equation of the system.

3. As a consequence, such an endogenous explanatory variable becomes stochastic and
is usually correlated with the disturbance term of the equation in which it appears as an
explanatory variable.

4. In this situation the classical OLS method may not be applied because the estimators
thus obtained are not consistent, that is, they do not converge to their true population val-
ues no matter how large the sample size.

5. The Monte Carlo example presented in the text shows the nature of the bias involved in
applying OLS to estimate the parameters of a regression equation in which the regres-
sor is correlated with the disturbance term, which is typically the case in simultaneous-
equation models.

6. Since simultaneous-equation models are used frequently, especially in econometric
models, alternative estimating techniques have been developed by various authors.
These are discussed in Chapter 20, after the topic of the identification problem is con-
sidered in Chapter 19, a topic logically prior to estimation.

EXERCISES Questions

18.1. Develop a simultaneous-equation model for the supply of and demand for dentists
in the United States. Specify the endogenous and exogenous variables in the model.

18.2. Develop a simple model of the demand for and supply of money in the United
States and compare your model with those developed by K. Brunner and A. H.
Meltzer” and R. Tiegen."

18.3. a. For the demand-and-supply model of Example 18.1, obtain the expression for

the probability limit of & .

b. Under what conditions will this probability limit be equal to the true o;?

18.4. For the IS-LM model discussed in the text, find the level of interest rate and income
that is simultaneously compatible with the goods and money market equilibrium.

18.5. To study the relationship between inflation and yield on common stock, Bruno
Oudet used the following model:

Ry = a1 + o Ryt + a3 Ry + gLy + asY; + agNIS, + a7l + uy,
Ry = B1 + BaRpt + B3 Rps—1 + BaL; + BsY; + BNIS; + B7E; + uy,

*“Some Further Evidence on Supply and Demand Functions for Money,” Journal of Finance, vol. 19,
May 1964, pp. 240-283.

f“Demand and Supply Functions for Money in the United States,” Econometrica, vol. 32, no. 4,
October 1964, pp. 476-509.

*Bruno A. Oudet, “The Variation of the Return on Stocks in Periods of Inflation,” Journal of Financial
and Quantitative Analysis, vol. 8, no. 2, March 1973, pp. 247-258.
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where L = real per capita monetary base
Y = real per capita income
I = the expected rate of inflation
NIS = a new issue variable
E = expected end-of-period stock returns, proxied by lagged stock price ratios

Ry, = bond yield
R, = common stock returns

a. Offer a theoretical justification for this model and see if your reasoning agrees
with that of Oudet.

b. Which are the endogenous variables in the model? Which are the exogenous
variables?

¢. How would you treat the lagged R,,—endogenous or exogenous?

18.6. In their article, “A Model of the Distribution of Branded Personal Products in
Jamaica,”" John U. Farley and Harold J. Levitt developed the following model (the
personal products considered were shaving cream, skin cream, sanitary napkins,
and toothpaste):

Yii=o1+ 1Yo + B Yai + B3 Yai +uy
YVoi = oo+ BaXii + BsYsi + iXu + vaXoi + ;i
Y3i = a3 + BeYoi + 3 X5 +usi
Yoi = as + B7Yoi + yaXui + ua
Ysi = as + BsYai + BoYsi + BroYu + us;
where Y} = percent of stores stocking the product
Y, = sales in units per month
Y3 = index of direct contact with importer and manufacturer for the product
Y4 = index of wholesale activity in the area
Ys = index of depth of brand stocking for the product (i.e., average number of
brands of the product stocked by stores carrying the product)
X = target population for the product
X, = income per capita in the parish where the area is

Xj = distance from the population center of gravity to Kingston
X, = distance from population center to nearest wholesale town

a. Can you identify the endogenous and exogenous variables in the preceding
model?

b. Can one or more equations in the model be estimated by the method of least
squares? Why or why not?

18.7. To study the relationship between advertising expenditure and sales of cigarettes,
Frank Bass used the following model:"

Yie =oa1+ B1Y3 + B Yo + i X1 + vaXor +uys
Yor = ap + B3 Y3 + BaYa + v3 X1 + vaXor + uy
Y3, =03+ BsY1 + BeYor + u3,
Yo = oy + B Y1, + BsYor + uy

“Journal of Marketing Research, November 1968, pp. 362-368.
A Simultaneous Equation Regression Study of Advertising and Sales of Cigarettes,” Journal of Mar-
keting Research, vol. 6, August 1969, pp. 291-300.
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where Y| = logarithm of sales of filter cigarettes (number of cigarettes) divided by
population over age 20
Y, = logarithm of sales of nonfilter cigarettes (number of cigarettes) divided by
population over age 20
Y3 = logarithm of advertising dollars for filter cigarettes divided by population
over age 20 divided by advertising price index
Y4 = logarithm of advertising dollars for nonfilter cigarettes divided by popula-
tion over age 20 divided by advertising price index
X, = logarithm of disposable personal income divided by population over age 20
divided by consumer price index
X, = logarithm of price per package of nonfilter cigarettes divided by consumer
price index
a. In the preceding model the Y’s are endogenous and the X’s are exogenous. Why
does the author assume X; to be exogenous?

b. If X is treated as an endogenous variable, how would you modify the preceding
model?

18.8. G. Menges developed the following econometric model for the West German
economy: "

Y, =Bo+ BrYi—1 + Body + uy

Iy = B3+ BaYr + Bs Q1 + un
Co=Bo+ B1Y: + BsCi—1 + Bo P + us;
Or = Pro+BuQi—1 + PR +uy

where Y = national income
I = net capital formation
C = personal consumption
O = profits
P = cost of living index
R = industrial productivity
t = time
u = stochastic disturbances

a. Which of the variables would you regard as endogenous and which as exogenous?

b. Is there any equation in the system that can be estimated by the single-equation
least-squares method?

c. What is the reason behind including the variable P in the consumption function?

18.9. L. E. Gallaway and P. E. Smith developed a simple model for the United States
economy, which is as follows: "

Y,=Ci+1,+G,
Ci = B1+ BYD1 + B3 M; + uy,

Iy = Ba+ Bs(Yio1 — Yi2) + BeZi—1 + un
G = Br+ BsGi—1 +uz

"G. Menges, “Ein Okonometriches Modell der Bundesrepublik Deutschland (Vier Strukturgleichungen),”
I.F.O. Studien, vol. 5, 1959, pp. 1-22.

A Quarterly Econometric Model of the United States,” Journal of American Statistical Association,
vol. 56, 1961, pp. 379-383.
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where Y = gross national product
C = personal consumption expenditure
I = gross private domestic investment
G = government expenditure plus net foreign investment
YD = disposable, or after-tax, income
M = money supply at the beginning of the quarter
Z = property income before taxes
t = time
uy, up, and u3 = stochastic disturbances

All variables are measured in the first-difference form.

From the quarterly data from 1948—1957, the authors applied the least-squares
method to each equation individually and obtained the following results:

C, = 0.09 + 0.43YD,_; + 0.23M, R? =0.23
I, =0.08+043(Y,_, — Y,_5) +0.48Z,  R*=0.40
G, =0.13+0.67G,_, R? = 0.42

a. How would you justify the use of the single-equation least-squares method in
this case?

b. Why are the R? values rather low?

Empirical Exercises

18.10. Table 18.2 gives you data on Y (gross domestic product), / (gross private domestic
investment), and C (personal consumption expenditure) for the United States for the
period 1970-2006. All data are in 1996 billions of dollars. Assume that C'is linearly
related to Y as in the simple Keynesian model of income determination of Exam-
ple 18.2. Obtain OLS estimates of the parameters of the consumption function. Save the
results for another look at the same data using the methods developed in Chapter 20.

18.11. Using the data given in Exercise 18.10, regress gross domestic investment / on
GDP and save the results for further examination in a later chapter.

18.12. Consider the macroeconomics identity
C+I=Y (= GDP)
As before, assume that
Ci=po+B1Y; +u
and, following the accelerator model of macroeconomics, let
I =a0+ai(Y, = Y1) + v

where u and v are error terms. From the data given in Exercise 18.10, estimate the
accelerator model and save the results for further study.

18.13. Supply and demand for gas. Table 18.3, found on the textbook website, gives data
on some of the variables that determine demand for and supply of gasoline in the
U.S. from January 1978 to August 2002." The variables are: pricegas (cents per

“These data are taken from the website of Stephen J. Schmidt, Fconometrics, McGraw-Hill, New York,
2005. See www.mhhe.com/economics.
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TABLE 18.2 Personal Consumption Expenditure, Gross Private Domestic Investment, and GDP, United States,
1970-2006 (billions of 1996 dollars)

Observation

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

C

2,451.9
2,545.5
2,701.3
2,833.8
2,812.3
2,876.9
3,035.5
3,164.1
3,303.1
3,383.4
3,374.1
3,422.2
3,470.3
3,668.6
3,863.3
4,064.0
4,228.9
4,369.8
4,546.9

I Y Observation C I Y
427.1 3,771.9 1989 4,675.0 926.2 6,981.4
475.7 3,898.6 1990 4,770.3 895.1 7,112.5
532.1 4,105.0 1991 4,778.4 822.2 7,100.5
594.4 4,341.5 1992 4,934.8 889.0 7,336.6
550.6 4,319.6 1993 5,099.8 968.3 7,532.7
453.1 4,311.2 1994 5,290.7 1,099.6 7,835.5
544.7 4,540.9 1995 5,433.5 1,134.0 8,031.7
627.0 4,750.5 1996 5,619.4 1,234.3 8,328.9
702.6 5,015.0 1997 5,831.8 1,387.7 8,703.5
725.0 5,173.4 1998 6,125.8 1,524.1 9,066.9
645.3 5,161.7 1999 6,438.6 1,642.6 9,470.3
704.9 5,291.7 2000 6,739.4 1,735.5 9,817.0
606.0 5,189.3 2001 6,910.4 1,598.4 9,890.7
662.5 5,423.8 2002 7,099.3 1,557.1 10,048.8
857.7 5,813.6 2003 7,295.3 1,613.1 10,301.0
849.7 6,053.7 2004 7,561.4 1,770.2 10,675.8
843.9 6,263.6 2005 7,803.6 1,869.3 11,003.4
870.0 6,475.1 2006 8,044.1 1,919.5 11,319.4

890.5 6,742.7

Notes: C = personal consumption expenditure.
1 = gross private domestic investment.
Y = gross domestic product.

Source: Economic Report of the President, 2008, Table B-2.

18.14.

gallon); quantgas (thousands of barrels per day, unleaded); persincome (personal
income, billions of dollars); and car sales (millions of cars per year).

a. Develop a suitable supply-and-demand model for gasoline consumption.
b. Which variables in the model in (a) are endogenous and which are exogenous?

c. If you estimate the demand-and-supply functions that you have developed by
OLS, will your results be reliable? Why or why not?

d. Save the OLS estimates of your demand-and-supply functions for another look
after we discuss Chapter 20.

Table 18.4, found on the textbook website, gives macroeconomic data on several
variables for the U.S. economy for the quarterly periods 19511 to 2000-IV." The
variables are as follows: Year = date; Qtr = quarter; Realgdp = real GDP (billions
of dollars); Realcons = real consumption expenditure; Realinvs = real investment
by private sector; Realgovt = real government expenditure; Realdpi = real dispos-
able personal income; CP/_U = consumer price index; M1 = nominal money
stock; Tbhilrate = quarterly average of month-end 90-day T-bill rate; Pop =
population, millions, interpolate of year-end figures using constant growth rate per
quarter; /nfl = rate of inflation (first observation is missing); and Realint = expost
real interest rate = Tbilrate—Infl (first observation missing).

Using these data, develop a simple macroeconomic model of the U.S. economy.
You will be asked to estimate this model in Chapter 20.

“These data are originally from the Department of Commerce, Bureau of Economic Analysis, and from
www.economagic.com, and are reproduced from William H. Greene, Econometric Analysis, 6th ed.,
2008, Table F5.1, p.1083.
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Chapter I 9

The Identification
Problem

In this chapter we consider the nature and significance of the identification problem. The
crux of the identification problem is as follows: Recall the demand-and-supply model
introduced in Section 18.2. Suppose that we have time series data on Q and P only and no
additional information (such as income of the consumer, price prevailing in the previous
period, and weather condition). The identification problem then consists in seeking an
answer to this question: Given only the data on P and O, how do we know whether we are
estimating the demand function or the supply function? Alternatively, if we think we are
fitting a demand function, how do we guarantee that it is, in fact, the demand function that
we are estimating and not something else?

A moment’s reflection will reveal that an answer to the preceding question is necessary
before one proceeds to estimate the parameters of our demand function. In this chapter we
shall show how the identification problem is resolved. We first introduce a few notations
and definitions and then illustrate the identification problem with several examples. This is
followed by the rules that may be used to find out whether an equation in a simultaneous-
equation model is identified, that is, whether it is the relationship that we are actually esti-
mating, be it the demand or supply function or something else.

19.1 Notations and Definitions

To facilitate our discussion, we introduce the following notations and definitions.
The general M equations model in M endogenous, or jointly dependent, variables may
be written as Eq. (19.1.1):

Y= BuaYa + BisYs + -+ Bim Y

+yuXy +yoXy +-- F ik Xg Fuy
Yy = B i + B3V + -+ Borr Y

+ Xy + Xy + -+ v X +uy
Y3 = Ba1Yie + B Yoy + -+ Bsm Y

+ v X+ Xy + -+ 3 Xk +uz,

Yvur = Bt Yie + BuaYor + - + Bu—1Yur—1,1
+ym X +vannXo + -+ vk Xgo + v
(19.1.1)
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where Yy, Y2, ..., Y)y = M endogenous, or jointly dependent, variables
X1, Xo, ..., Xx = K predetermined variables (one of these X variables may take a
value of unity to allow for the intercept term in each equation)
uy, Uy, ..., uy = M stochastic disturbances
t =1,2,..., T = total number of observations

B’s = coefficients of the endogenous variables
y’s = coefficients of the predetermined variables

In passing, note that not each and every variable need appear in each equation. As a matter
of fact, we see in Section 19.2 that this must not be the case if an equation is to be identified.

As Eq. (19.1.1) shows, the variables entering a simultaneous-equation model are of two
types: endogenous, that is, those (whose values are) determined within the model; and
predetermined, that is, those (whose values are) determined outside the model. The endoge-
nous variables are regarded as stochastic, whereas the predetermined variables are treated
as nonstochastic.

The predetermined variables are divided into two categories: exogenous, current as well
as lagged, and lagged endogenous. Thus, X, is a current (present-time) exogenous variable,
whereas Xi,_1) is a lagged exogenous variable, with a lag of one time period. ¥(,_) is a
lagged endogenous variable with a lag of one time period, but since the value of Yy(,_1) is
known at the current time ¢, it is regarded as nonstochastic, hence, a predetermined variable. !
In short, current exogenous, lagged exogenous, and lagged endogenous variables are deemed
predetermined; their values are not determined by the model in the current time period.

It is up to the model builder to specify which variables are endogenous and which are
predetermined. Although (noneconomic) variables, such as temperature and rainfall, are
clearly exogenous or predetermined, the model builder must exercise great care in classify-
ing economic variables as endogenous or predetermined: He or she must defend the classi-
fication on a priori or theoretical grounds. However, later in the chapter we provide a
statistical test of exogeneity.

The equations appearing in (19.1.1) are known as the structural, or behavioral, equa-
tions because they may portray the structure (of an economic model) of an economy or the
behavior of an economic agent (e.g., consumer or producer). The 8’ and y’s are known as
the structural parameters or coefficients.

From the structural equations one can solve for the M endogenous variables and derive
the reduced-form equations and the associated reduced-form coefficients. A reduced-
form equation is one that expresses an endogenous variable solely in terms of the
predetermined variables and the stochastic disturbances. To illustrate, consider the
Keynesian model of income determination encountered in Chapter 18:

Consumption function:  C, = By + 1Y + u, 0<pB <1 (18.2.3)
Income identity: Y,=C+ 1 (18.2.4)

In this model C (consumption) and Y (income) are the endogenous variables and / (investment
expenditure) is treated as an exogenous variable. Both these equations are structural equations,
Eq. (18.2.4) being an identity. As usual, the MPC g is assumed to lie between 0 and 1.

If Eq. (18.2.3) is substituted into Eq. (18.2.4), we obtain, after simple algebraic
manipulation,

Y[:H0+H1][+Wt (19.1.2)

"It is assumed implicitly here that the stochastic disturbances, the u’s, are serially uncorrelated. If this
is not the case, Y;_1 will be correlated with the current period disturbance term u;. Hence, we cannot
treat it as predetermined.
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where

Bo

H:

T 15

I, = ! 19.1.3

T 1op (19.1.3)
Uy

Wy =
1 — B

Equation (19.1.2) is a reduced-form equation; it expresses the endogenous variable Y
solely as a function of the exogenous (or predetermined) variable / and the stochastic distur-
bance term u. ITy and IT; are the associated reduced-form coefficients. Notice that these
reduced-form coefficients are nonlinear combinations of the structural coefficient(s).

Substituting the value of ¥ from Eq. (19.1.2) into C of Eq. (18.2.3), we obtain another
reduced-form equation:

C, - H2+H3[[+Wt (19.1.4)
where
szlﬂoﬁ H3=1ﬂ1'3
: : (19.1.5)
Uy
Wt =
1 =5

The reduced-form coefficients, such as I1; and IT3, are also known as impact, or short-
run, multipliers, because they measure the immediate impact on the endogenous variable
of a unit change in the value of the exogenous variable.? If in the preceding Keynesian
model the investment expenditure is increased by, say, $1 and if the MPC is assumed to be
0.8, then from Eq. (19.1.3) we obtain IT1; = 5. This result means that increasing the invest-
ment by $1 will immediately (i.e., in the current time period) lead to an increase in income
of $5, that is, a fivefold increase. Similarly, under the assumed conditions, Eq. (19.1.5)
shows that I13 = 4, meaning that $1 increase in investment expenditure will lead immedi-
ately to $4 increase in consumption expenditure.

In the context of econometric models, equations such as Eq. (18.2.4) or Q¢ = Q¢
(quantity demanded equal to quantity supplied) are known as the equilibrium conditions.
Identity (18.2.4) states that aggregate income Y must be equal to aggregate consumption
(i.e., consumption expenditure plus investment expenditure). When equilibrium is
achieved, the endogenous variables assume their equilibrium values.?

Notice an interesting feature of the reduced-form equations. Since only the predeter-
mined variables and stochastic disturbances appear on the right sides of these equations,
and since the predetermined variables are assumed to be uncorrelated with the disturbance
terms, the OLS method can be applied to estimate the coefficients of the reduced-form
equations (the IT’s). From the estimated reduced-form coefficients one may estimate the
structural coefficients (the S’s), as shown later. This procedure is known as indirect least
squares (ILS), and the estimated structural coefficients are called ILS estimates.

2In econometric models the exogenous variables play a crucial role. Very often, such variables are
under the direct control of the government. Examples are the rate of personal and corporate taxes,
subsidies, unemployment compensation, etc.

3For details, see Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, pp. 723-731.
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We shall study the ILS method in greater detail in Chapter 20. In the meantime, note that
since the reduced-form coefficients can be estimated by the OLS method, and since these co-
efficients are combinations of the structural coefficients, the possibility exists that the
structural coefficients can be “retrieved” from the reduced-form coefficients, and it is in
the estimation of the structural parameters that we may be ultimately interested. How does
one retrieve the structural coefficients from the reduced-form coefficients? The answer is
given in Section 19.2, an answer that brings out the crux of the identification problem.

19.2 The Identification Problem

By the identification problem we mean whether numerical estimates of the parameters of
a structural equation can be obtained from the estimated reduced-form coefficients. If this
can be done, we say that the particular equation is identified. If this cannot be done, then we
say that the equation under consideration is unidentified, or underidentified.

An identified equation may be either exactly (or fully or just) identified or overidentified.
It is said to be exactly identified if unique numerical values of the structural parameters can
be obtained. It is said to be overidentified if more than one numerical value can be obtained
for some of the parameters of the structural equations. The circumstances under which each
of these cases occurs will be shown in the following discussion.

The identification problem arises because different sets of structural coefficients may be
compatible with the same set of data. To put the matter differently, a given reduced-form
equation may be compatible with different structural equations or different hypotheses
(models), and it may be difficult to tell which particular hypothesis (model) we are investi-
gating. In the remainder of this section we consider several examples to show the nature of
the identification problem.

Underidentification

Consider once again the demand-and-supply model (18.2.1) and (18.2.2), together with the
market-clearing, or equilibrium, condition that demand is equal to supply. By the equilib-
rium condition, we obtain

oo+ o P +uyy = Bo+ PP+ uy (19.2.1)
Solving Eq. (19.2.1), we obtain the equilibrium price
P =T+ (19.2.2)
where
m, = P =% (19.2.3)
ar— B
y, = 2 e (19.2.4)
ar— B

Substituting P; from Eq. (19.2.2) into Eq. (18.2.1) or (18.2.2), we obtain the following
equilibrium quantity:

O =1L +w (19.2.5)
where
m, = @1fo — a0 (19.2.6)
o — B
w, = 2t = Pty (19.2.7)

ap — B



FIGURE 19.1
Hypothetical supply-
and-demand functions
and the identification
problem.
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Incidentally, note that the error terms v, and w, are linear combinations of the original error
terms u; and u,.

Equations (19.2.2) and (19.2.5) are reduced-form equations. Now our demand-and-
supply model contains four structural coefficients oy, o1, By, and Sy, but there is no unique
way of estimating them. Why? The answer lies in the two reduced-form coefficients given in
Eqgs. (19.2.3) and (19.2.6). These reduced-form coefficients contain all four structural para-
meters, but there is no way in which the four structural unknowns can be estimated from only
two reduced-form coefficients. Recall from high school algebra that to estimate four un-
knowns we must have four (independent) equations, and, in general, to estimate £ unknowns
we must have & (independent) equations. Incidentally, if we run the reduced-form regression
(19.2.2) and (19.2.5), we will see that there are no explanatory variables, only the constants,
and these constants will simply give the mean values of P and Q (why?).

What all this means is that, given time series data on P (price) and Q (quantity) and no
other information, there is no way the researcher can guarantee whether he or she is esti-
mating the demand function or the supply function. That is, a given P, and Q, represent
simply the point of intersection of the appropriate demand-and-supply curves because of
the equilibrium condition that demand is equal to supply. To see this clearly, consider the
scattergram shown in Figure 19.1.

Figure 19.1a gives a few scatterpoints relating Q to P. Each scatterpoint represents the
intersection of a demand and a supply curve, as shown in Figure 19.15. Now consider a sin-
gle point, such as that shown in Figure 19.1¢. There is no way we can be sure which demand-
and-supply curve of a whole family of curves shown in that panel generated that point.
Clearly, some additional information about the nature of the demand-and-supply curves is
needed. For example, if the demand curve shifts over time because of change in income,

P p P S
D
- X7 R
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£ . = £
A~ S
D
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Q . Q :
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tastes, etc., but the supply curve remains relatively stable, as in Figure 19.1d, the scatter-
points trace out a supply curve. In this situation, we say that the supply curve is identified.
By the same token, if the supply curve shifts over time because of changes in weather con-
ditions (in the case of agricultural commodities) or other extraneous factors but the demand
curve remains relatively stable, as in Figure 19.1e, the scatterpoints trace out a demand
curve. In this case, we say that the demand curve is identified.

There is an alternative and perhaps more illuminating way of looking at the identifica-
tion problem. Suppose we multiply Eq. (18.2.1) by A (0 < A < 1) and Eq. (18.2.2) by I — A
to obtain the following equations (nofe: we drop the superscripts on Q):

AQ; = Aag + oy Py + duy, (1928)
(1= 200, = (1= Mo+ (1 = WP+ (1 — s, (19.2.9)

Adding these two equations gives the following linear combination of the original demand-
and-supply equations:

Or=yo+nb+w (19.2.10)
where
Yo = Aao + (1 = 2)Bo
Y1 =2+ (1=2)B (19.2.11)
we = Auyy + (1 — Duy,

The “bogus,” or “mongrel,” equation (19.2.10) is observationally indistinguishable
from either Eq. (18.2.1) or Eq. (18.2.2) because they involve the regression of Q and P.
Therefore, if we have time series data on P and Q only, any of Egs. (18.2.1), (18.2.2), or
(19.2.10) may be compatible with the same data. In other words, the same data may be
compatible with the “hypothesis” Egs. (18.2.1), (18.2.2), or (19.2.10), and there is no way
we can tell which one of these hypotheses we are testing.

For an equation to be identified, that is, for its parameters to be estimated, it must be shown
that the given set of data will not produce a structural equation that looks similar in appearance
to the one in which we are interested. If we set out to estimate the demand function, we must
show that the given data are not consistent with the supply function or some mongrel equation.

Just, or Exact, Identification

The reason we could not identify the preceding demand function or the supply function was
that the same variables P and Q are present in both functions and there is no additional in-
formation, such as that indicated in Figure 19.1d or e. But suppose we consider the follow-
ing demand-and-supply model:

Demand function: Q; = oy + a1 P+ axl, +uy, a1 <0, >0 (19.2.12)
Supply function:  Q, = Po + 1P, + uy B >0 (19.2.13)

where / = income of the consumer, an exogenous variable, and all other variables are as
defined previously.

Notice that the only difference between the preceding model and our original demand-
and-supply model is that there is an additional variable in the demand function, namely, in-
come. From economic theory of demand we know that income is usually an important
determinant of demand for most goods and services. Therefore, its inclusion in the demand
function will give us some additional information about consumer behavior. For most com-
modities income is expected to have a positive effect on consumption (a; > 0).
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Using the market-clearing mechanism, quantity demanded = quantity supplied, we have

ag +a1 P +andy +uy = Bo+ BiL P+ uy (19.2.14)
Solving Eq. (19.2.14) provides the following equilibrium value of P;:
P,=H0+H1[,+v, (19.2.15)
where the reduced-form coefficients are
My = Bo — ;0
armh (19.2.16)
(2]
I, =—
a; — B
and
Uz — Uls
Vt -
ar — B

Substituting the equilibrium value of 7, into the preceding demand or supply function, we
obtain the following equilibrium quantity:

Or =T + 51 +w, (19.2.17)
where
M, = a1 B — ‘;0/31
a (19.2.18)
as B
My = —— 2P
a; — B
and

ajuy — PBruy,
ar — Bi

Since Egs. (19.2.15) and (19.2.17) are both reduced-form equations, the ordinary least
squares (OLS) method can be applied to estimate their parameters. Now the demand-and-
supply model (19.2.12) and (19.2.13) contains five structural coefficients—ay, o1, o2, Bo
and ;. But there are only four equations to estimate them, namely, the four reduced-form
coefficients Iy, I}, IT,, and IT3 given in Eqgs. (19.2.16) and (19.2.18). Hence, unique so-
lution of all the structural coefficients is not possible. But it can be readily shown that the
parameters of the supply function can be identified (estimated) because

Wy =

Bo =T, — B
PR (19.2.19)
1=

But there is no unique way of estimating the parameters of the demand function; therefore,
it remains underidentified. Incidentally, note that the structural coefficient 8, is a nonlinear
function of the reduced-form coefficients, which poses some problems when it comes to es-
timating the standard error of the estimated 8, as we shall see in Chapter 20.

To verify that the demand function (19.2.12) cannot be identified (estimated), let us mul-
tiply it by A (0 < A < 1) and (19.2.13) by 1 — A and add them up to obtain the following
“mongrel” equation:

Or=v+nb+yl+w (19.2.20)
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where
Yo = Aao + (1 —2)Bo
yi =i + (1 =21)B (19.2.21)
Y2 = Aoy

and

wy = Auy + (1 — Muy

Equation (19.2.20) is observationally indistinguishable from the demand function (19.2.12)
although it is distinguishable from the supply function (19.2.13), which does not contain the
variable / as an explanatory variable. Hence, the demand function remains unidentified.

Notice an interesting fact: It is the presence of an additional variable in the demand
function that enables us to identify the supply function! Why? The inclusion of the
income variable in the demand equation provides us some additional information about the
variability of the function, as indicated in Figure 19.1d. The figure shows how the inter-
section of the stable supply curve with the shifting demand curve (on account of changes in
income) enables us to trace (identify) the supply curve. As will be shown shortly, very often
the identifiability of an equation depends on whether it excludes one or more variables that
are included in other equations in the model.

But suppose we consider the following demand-and-supply model:

Demand function: Q; = oo+ a1 P +axl, +uy, a; < 0,0 >0
(19.2.12)
Supply function:  Q; = Bo+ p1Pr + PPy +uy  f1>0,>0
(19.2.22)

where the demand function remains as before but the supply function includes an addi-
tional explanatory variable, price lagged one period. The supply function postulates that the
quantity of a commodity supplied depends on its current and previous period’s price, a
model often used to explain the supply of many agricultural commodities. Note that P;_; is
a predetermined variable because its value is known at time .

By the market-clearing mechanism we have

oo+ oy P ool +uy = Bo+ PP+ PaPioy +uy (19.2.23)

Solving this equation, we obtain the following equilibrium price:

P,:l'[o—l—l'[llt—i—l'[th,l—i—vt (19224)
where
My = Bo — o
a; — B
M =——2
ap — B
(19.2.25)
B2
I, =
a; — B
Uy — ULt
V[ =

ap — B
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Substituting the equilibrium price into the demand or supply equation, we obtain the
corresponding equilibrium quantity:

O, =T34+ T4l + s Py + wy (19226)

where the reduced-form coefficients are

M, = aiBo — aoPi
ar — B
azBi
My = — 19.2.27
¢ a; — B ( )
M = ai B
a; — B
and
ajuy — PBruy,
W= —"7T—

ar — B

The demand-and-supply model given in Egs. (19.2.12) and (19.2.22) contains six structural
coefficients—ay, a1, a2, Bo, B1, and B,—and there are six reduced-form coefficients—
Iy, 1, Iy, I3, [14, and I1s—to estimate them. Thus, we have six equations in six un-
knowns, and normally we should be able to obtain unique estimates. Therefore, the parameters
of both the demand-and-supply equations can be identified, and the system as a whole can be
identified. (In Exercise 19.2 the reader is asked to express the six structural coefficients in
terms of the six reduced-form coefficients given previously to show that unique estimation of
the model is possible.)

To check that the preceding demand-and-supply functions are identified, we can also
resort to the device of multiplying the demand equation (19.2.12) by A (0 < A < 1) and the
supply equation (19.2.22) by 1 — A and add them to obtain a mongrel equation. This mon-
grel equation will contain both the predetermined variables /, and P,_;; hence, it will be
observationally different from the demand as well as the supply equation because the former
does not contain P;_; and the latter does not contain /,.

Overidentification

For certain goods and services, income as well as wealth of the consumer is an important
determinant of demand. Therefore, let us modify the demand function (19.2.12) as follows,
keeping the supply function as before:

Demand function: Or=ap+o1Pr+axly + 3R, +uy; (19.2.28)
Supply function: O, =Bo+Bi1P+ BPry +uy (19.2.22)

where in addition to the variables already defined, R represents wealth; for most goods and
services, wealth, like income, is expected to have a positive effect on consumption.
Equating demand to supply, we obtain the following equilibrium price and quantity:

P =Tly+ 111, + LR, + T3P _1 + v, (19229)

Qt = H4 + H5[t + H(JRt + H7Pt_1 + wy (19230)



698 Part Four Simultaneous-Equation Models and Time Series Econometrics

where
1_[02.30—060 M= o
ap — B ap — B
M=% m=_"_
a; — B ap — B
I, = a1fo — aofi HSZ_L'BI (19.2.31)
ap — B ap — B
M= @hr m— P
a; — B a; — B
ajuy — Bruy, Uy — Uy
W= —" V= ——
ap — B ar — B

The preceding demand-and-supply model contains seven structural coefficients, but
there are eight equations to estimate them—the eight reduced-form coefficients given in
Eq. (19.2.31); that is, the number of equations is greater than the number of unknowns. As
a result, unique estimation of all the parameters of our model is not possible, which can be
shown easily. From the preceding reduced-form coefficients, we can obtain

I

= 19.2.32
B1 o, (19.2.32)
or
ITs
= — 19.2.33
B1 o, ( )

that is, there are two estimates of the price coefficient in the supply function, and there is no
guarantee that these two values or solutions will be identical.* Moreover, since B appears
in the denominators of all the reduced-form coefficients, the ambiguity in the estimation of
B1 will be transmitted to other estimates too.

Why was the supply function identified in the system (19.2.12) and (19.2.22) but not in
the system (19.2.28) and (19.2.22), although in both cases the supply function remains the
same? The answer is that we have “too much,” or an oversufficiency of information, to
identify the supply curve. This situation is the opposite of the case of underidentification,
where there is too little information. The oversufficiency of the information results from the
fact that in the model (19.2.12) and (19.2.22) the exclusion of the income variable from
the supply function was enough to identify it, but in the model (19.2.28) and (19.2.22) the
supply function excludes not only the income variable but also the wealth variable. In other
words, in the latter model we put “too many” restrictions on the supply function by
requiring it to exclude more variables than necessary to identify it. However, this situation
does not imply that overidentification is necessarily bad because we shall see in Chapter 20
how we can handle the problem of too much information, or too many restrictions.

We have now exhausted all the cases. As the preceding discussion shows, an equation in
a simultaneous-equation model may be underidentified or identified (either over- or just).
The model as a whole is identified if each equation in it is identified. To secure identifica-
tion, we resort to the reduced-form equations. But in Section 19.3, we consider an alterna-
tive and perhaps less time-consuming method of determining whether or not an equation in
a simultaneous-equation model is identified.

“Notice the difference between under- and overidentification. In the former case, it is impossible
to obtain estimates of the structural parameters, whereas in the latter case, there may be several
estimates of one or more structural coefficients.
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19.3 Rules for Identification

As the examples in Section 19.2 show, in principle it is possible to resort to the reduced-
form equations to determine the identification of an equation in a system of simultaneous
equations. But these examples also show how time-consuming and laborious the process
can be. Fortunately, it is not essential to use this procedure. The so-called order and rank
conditions of identification lighten the task by providing a systematic routine.

To understand the order and rank conditions, we introduce the following notations:

M = number of endogenous variables in the model

m = number of endogenous variables in a given equation

K = number of predetermined variables in the model including the intercept
k = number of predetermined variables in a given equation

The Order Condition of Identifiability>

A necessary (but not sufficient) condition of identification, known as the order condition,
may be stated in two different but equivalent ways as follows (the necessary as well as suf-
ficient condition of identification will be presented shortly):

Definition 19.1

In a model of M simultaneous equations, in order for an equation to be identified, it must
exclude at least M — 1 variables (endogenous as well as predetermined) appearing in the
model. If it excludes exactly M — 1 variables, the equation is just identified. If it excludes
more than M — 1 variables, it is overidentified.

Definition 19.2

In a model of M simultaneous equations, in order for an equation to be identified, the
number of predetermined variables excluded from the equation must not be less than the
number of endogenous variables included in that equation less 1, that is,

K—k>m-—1 (19.3.1)
If K —k =m — 1, the equation is just identified, but if K — k > m — 1, it is overidentified.

In Exercise 19.1 the reader is asked to prove that the preceding two definitions of identifi-
cation are equivalent.
To illustrate the order condition, let us revert to our previous examples.

EXAMPLE 19.1

Demand function: QY = ap+ arPy + ury (18.2.1)
Supply function: Qi = Bo+ B1P + uyt (18.2.2)

This model has two endogenous variables P and Q and no predetermined variables. To be
identified, each of these equations must exclude at least M — 1 =1 variable. Since this is
not the case, neither equation is identified.

EXAMPLE 19.2

Demand function: QY = ap+ arP+ aaly + e (19.2.12)
Supply function: Q; = Bo+ B1Pr+ uy (19.2.13)

In this model Q and P are endogenous and [ is exogenous. Applying the order condition
given in Eq. (19.3.1), we see that the demand function is unidentified. On the other hand,
the supply function is just identified because it excludes exactly M — 1 =1 variable /;.

5The term order refers to the order of a matrix, that is, the number of rows and columns present in a
matrix. See Appendix B.
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EXAMPLE 19.3

Demand function: Q =ao+ arPi+ sl + e (19.2.12)
Supply function: Qi = Bo+ BiPr+ BaPrr + uze (19.2.22)

Given that P; and Q; are endogenous and /; and P;_; are predetermined, Eq. (19.2.12)
excludes exactly one variable P,_; and Eq. (19.2.22) also excludes exactly one variable /.
Hence each equation is identified by the order condition. Therefore, the model as a whole
is identified.

EXAMPLE 19.4

Demand function: QY = ap+ a1Py + azly + a3R; + ury (19.2.28)
Supply function: Qi = Bo+ BiPt + BaPi1 + U (19.2.22)

In this model P;and Q; are endogenous and /;, R;, and P;_; are predetermined. The demand
function excludes exactly one variable P,_;, and hence by the order condition it is exactly
identified. But the supply function excludes two variables I; and R;, and hence it is overi-
dentified. As noted before, in this case there are two ways of estimating 81, the coefficient
of the price variable.

Notice a slight complication here. By the order condition the demand function is iden-
tified. But if we try to estimate the parameters of this equation from the reduced-form
coefficients given in Eq. (19.2.31), the estimates will not be unique because g1, which
enters into the computations, takes two values and we shall have to decide which of these
values is appropriate. But this complication can be obviated because it is shown in Chap-
ter 20 that in cases of overidentification the method of indirect least squares is not appro-
priate and should be discarded in favor of other methods. One such method is two-stage
least squares, which we shall discuss fully in Chapter 20.

As the previous examples show, identification of an equation in a model of simultaneous
equations is possible if that equation excludes one or more variables that are present else-
where in the model. This situation is known as the exclusion (of variables) criterion, or the
zero restrictions criterion (the coefficients of variables not appearing in an equation are
assumed to have zero values). This criterion is by far the most commonly used method of
securing or determining identification of an equation. But notice that the zero restrictions
criterion is based on a priori or theoretical expectations that certain variables do not appear
in a given equation. It is up to the researcher to spell out clearly why he or she does expect
certain variables to appear in some equations and not in others.

The Rank Condition of Identifiability®

The order condition discussed previously is a necessary but not sufficient condition for iden-
tification; that is, even if it is satisfied, it may happen that an equation is not identified. Thus,
in Example 19.2, the supply equation was identified by the order condition because it
excluded the income variable /;, which appeared in the demand function. But identification
is accomplished only if a, the coefficient of /; in the demand function, is not zero, that is,
if the income variable not only probably but actually does enter the demand function.

More generally, even if the order condition K — k > m — 1 is satisfied by an equation, it
may be unidentified because the predetermined variables excluded from this equation but
present in the model may not all be independent so that there may not be one-to-one corre-
spondence between the structural coefficients (the fs) and the reduced-form coefficients

5The term rank refers to the rank of a matrix and is given by the largest-order square matrix
(contained in the given matrix) whose determinant is nonzero. Alternatively, the rank of a matrix is
the largest number of linearly independent rows or columns of that matrix. See Appendix B.
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(the IT’s). That is, we may not be able to estimate the structural parameters from the reduced-
form coefficients, as we shall show shortly. Therefore, we need both a necessary and suffi-
cient condition for identification. This is provided by the rank condition of identification,
which may be stated as follows:

Rank Condition
of Identification

In a model containing M equations in M endogenous variables, an equation is identified if
and only if at least one nonzero determinant of order (M — 1)(M — 1) can be constructed
from the coefficients of the variables (both endogenous and predetermined) excluded
from that particular equation but included in the other equations of the model.

TABLE 19.1

TABLE 19.2

As an illustration of the rank condition of identification, consider the following hypo-
thetical system of simultaneous equations in which the Y variables are endogenous and the
X variables are predetermined.’

Yi; — Bio — Br2Yar — B13Ys — yuXu, =uy
(19.3.2)

Y2 — Boo — B3 Y3 — yaur X — v Xo, = uy
(19.3.3)

— VX — ynXy =uy
(19.3.4)

Y3 — Bzo — B31 Y1

— Y3 X3 = uy
(19.3.5)

Y4 — Bao — B Yii — Bao Yo

To facilitate identification, let us write the preceding system in Table 19.1, which is self-
explanatory.

Let us first apply the order condition of identification, as shown in Table 19.2. By the
order condition each equation is identified. Let us recheck with the rank condition. Con-
sider the first equation, which excludes variables Y4, X, and X3 (this is represented by
zeros in the first row of Table 19.1). For this equation to be identified, we must obtain at

Coefficients of the Variables
Equation No. 1 Yq Y Ys Y4 X1 X2 X3

(19.3.2) —B1o 1 B2 —pis3 0 - 0 0
(19.3.3) —B20 0 1 —B23 0 —y2 —Y22 0
0
1

(19.3.4) —B30 —PB31 0 1 —¥31 —¥32 0
(19.3.5) —Bso  —Pu —Ba2 0 0 0 — V43

No. of Endogenous
Variables Included,

No. of Predetermined
Variables Excluded,

Equation No. (K— k) Less One, (m— 1) Identified?
(19.3.2) 2 2 Exactly
(19.3.3) 1 1 Exactly
(19.3.4) 1 1 Exactly
(19.3.5) 2 2 Exactly

’The simultaneous-equation system presented in Eq. (19.1.1) may be shown in the following
alternative form, which may be convenient for matrix manipulations.
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least one nonzero determinant of order 3 x 3 from the coefficients of the variables excluded
from this equation but included in other equations. To obtain the determinant we first obtain
the relevant matrix of coefficients of variables Y, X, and X3 included in the other equa-
tions. In the present case there is only one such matrix, call it A, defined as follows:

0 —yn O
A=]|0 —yp 0 (19.3.6)
I 0 —ws
It can be seen that the determinant of this matrix is zero:
0 —yn O
detA=1{0 —y5p 0 (19.3.7)
L0 —ysq

Since the determinant is zero, the rank of the matrix (19.3.6), denoted by p(A), is less than 3.
Therefore, Eq. (19.3.2) does not satisfy the rank condition and hence is not identified.

As noted, the rank condition is both a necessary and sufficient condition for identifica-
tion. Therefore, although the order condition shows that Eq. (19.3.2) is identified, the rank
condition shows that it is not. Apparently, the columns or rows of the matrix A given in
Eq. (19.3.6) are not (linearly) independent, meaning that there is some relationship between
the variables Y4, X5, and X3. As a result, we may not have enough information to estimate
the parameters of equation (19.3.2); the reduced-form equations for the preceding model
will show that it is not possible to obtain the structural coefficients of that equation from the
reduced-form coefficients. The reader should verify that by the rank condition Egs. (19.3.3)
and (19.3.4) are also unidentified but Eq. (19.3.5) is identified.

As the preceding discussion shows, the rank condition tells us whether the equation
under consideration is identified or not, whereas the order condition tells us if it is exactly
identified or overidentified.

To apply the rank condition one may proceed as follows:

1. Write down the system in a tabular form, as shown in Table 19.1.
2. Strike out the coefficients of the row in which the equation under consideration appears.

3. Also strike out the columns corresponding to those coefficients in step (2) which are
nonzero.

4. The entries left in the table will then give only the coefficients of the variables included
in the system but not in the equation under consideration. From these entries form all
possible matrices, like A, of order M — 1 and obtain the corresponding determinants. If
at least one nonvanishing or nonzero determinant can be found, the equation in question
is (just or over-) identified. The rank of the matrix, say, A, in this case is exactly equal
to M — 1. If all the possible (M — 1)(M — 1) determinants are zero, the rank of the ma-
trix A is less than M — 1 and the equation under investigation is not identified.

Our discussion of the order and rank conditions of identification leads to the following
general principles of identifiability of a structural equation in a system of M simultaneous

equations:
1. If K— k> m — 1 and the rank of the A matrix is M — 1, the equation is overidentified.
2. If K— k=m — 1 and the rank of the matrix A is M — 1, the equation is exactly identified.
3. If K— k> m—1 and the rank of the matrix A is less than M — 1, the equation is

underidentified.

4. If K— k < m — 1, the structural equation is unidentified. The rank of the A matrix in
this case is bound to be less than M — 1. (Why?)
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Henceforth, when we talk about identification we mean exact identification or overidentifi-
cation. There is no point in considering unidentified, or underidentified, equations because no
matter how extensive the data, the structural parameters cannot be estimated. Besides, most
simultaneous-equation systems in economics and finance are overidentified rather than under-
identified, so we need not worry too much about underidentification. However, as shown in
Chapter 20, parameters of overidentified as well as just identified equations can be estimated.

Which condition should one use in practice: Order or rank? For large simultaneous-
equation models, applying the rank condition is a formidable task. Therefore, as Harvey notes,

Fortunately, the order condition is usually sufficient to ensure identifiability, and although it is
important to be aware of the rank condition, a failure to verify it will rarely result in disaster.®

“19.4 A Test of Simultaneity”

If there is no simultaneous equation, or simultaneity problem, the OLS estimators produce
consistent and efficient estimators. On the other hand, if there is simultaneity, OLS
estimators are not even consistent. In the presence of simultaneity, as we will show in Chap-
ter 20, the methods of two-stage least squares (2SLS) and instrumental variables (IV)
will give estimators that are consistent and efficient. Oddly, if we apply these alternative
methods when there is in fact no simultaneity, these methods yield estimators that are con-
sistent but not efficient (i.e., with smaller variance). This discussion suggests that we should
check for the simultaneity problem before we discard OLS in favor of the alternatives.

As we showed earlier, the simultaneity problem arises because some of the regressors are
endogenous and are therefore likely to be correlated with the disturbance, or error, term.
Therefore, a test of simultaneity is essentially a test of whether (an endogenous) regressor is
correlated with the error term. 1f it is, the simultaneity problem exists, in which case alter-
natives to OLS must be found; if it is not, we can use OLS. To find out which is the case in
a concrete situation, we can use Hausman'’s specification error test.

Hausman Specification Test

A version of the Hausman specification error test that can be used for testing the simul-
taneity problem can be explained as follows: '’
To fix ideas, consider the following two-equation model:

Demand function: Q,d =aay+oa1 P +arl; + 3R, + uy; (19.4.1)

Supply function: 0} = Po+ PP+ uy (19.4.2)
where P =price
Q = quantity
I =income
R = wealth

u’s = error terms

Assume that 7 and R are exogenous. Of course, P and Q are endogenous.

*Optional.

8Andrew Harvey, The Econometric Analysis of Time Series, 2d ed., The MIT Press, Cambridge, Mass.,
1990, p. 328.

9The following discussion draws from Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models
and Economic Forecasts, 3d ed., McGraw-Hill, New York, 1991, pp. 303-305.

19), A. Hausman, “Specification Tests in Econometrics,” Econometrica, vol. 46, November 1976,

pp. 1251-1271. See also A. Nakamura and M. Nakamura, “On the Relationship among Several
Specification Error Tests Presented by Durbin, Wu, and Hausman,” Econometrica, vol. 49, November
1981, pp. 1583-1588.
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Now consider the supply function (19.4.2). If there is no simultaneity problem (i.e., P
and Q are mutually independent), P, and u,, should be uncorrelated (why?). On the other
hand, if there is simultaneity, P; and u,, will be correlated. To find out which is the case, the
Hausman test proceeds as follows:

First, from Eqgs. (19.4.1) and (19.4.2) we obtain the following reduced-form equations:

P =Tlg+ 11 I; + TIL,R, + v, (19.4.3)
O, =TIz +T4l, + TIsR, +w, (19.4.4)
where v and w are the reduced-form error terms. Estimating Eq. (19.4.3) by OLS we obtain
P, =My + M1, + LR, (19.4.5)
Therefore,
P=P+% (19.4.6)

where 13, are estimated P; and V, are the estimated residuals. Now consider the following
equation:

O; = Bo+ B2+ Bivs + ux (19.4.7)

Note: The coefficients of P; and v, are the same. The difference between this equation and
the original supply equation is that it includes the additional variable V,, the residual from
regression (19.4.3).

Now, if the null hypothesis is that there is no simultaneity, that is, P; is not an endogenous
variable, the correlation between v, and u;, should be zero, asymptotically. Thus, if we run the
regression (19.4.7) and find that the coefficient of v; in Eq. (19.4.7) is statistically zero, we can
conclude that there is no simultaneity problem. Of course, this conclusion will be reversed if
we find this coefficient to be statistically significant. In passing, note that Hausman’s simul-
taneity test is also known as the Hausman test of endogeneity: In the present example we want
to find out if 7, is endogenous. If it is, we have the simultaneity problem.

Essentially, then, the Hausman test involves the following steps:

Step 1. Regress P, on I; and R, to obtain v,.

Step 2. Regress O, on P, and ¥, and perform a # test on the coefficient of v,. If it is sig-
nificant, do not reject the hypothesis of simultaneity; otherwise, reject it.!! For efficient
estimation, however, Pindyck and Rubinfeld suggest regressing Q; on P, and ¥,.!?

There are alternative ways to apply the Hausman test, which are given by way of an
exercise.

EXAMPLE 19.5
Pindyclk—
Rubinfeld Model
of Public
Spending'?

To study the behavior of U.S. state and local government expenditure, the authors devel-
oped the following simultaneous-equation model:

EXP = g1 + B2AID + B3INC + B4POP + u; (19.4.8)
AID = 87 + 8,EXP + 83PS + v; (1 9.4.9)
where EXP = state and local government public expenditures

AID = level of federal grants-in-aid
INC = income of states
POP = state population
PS = population of primary and secondary school children
u and v = error terms

In this model, INC, POP, and PS are regarded as exogenous.

"If more than one endogenous regressor is involved, we will have to use the F test.
12pindyck and Rubinfeld, op. cit., p. 304. Note: The regressor is P; and not P;.
13Pindyck and Rubinfeld, op. cit., pp. 176-177. Notations slightly altered.
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EXAMPLE 19.5 Because of the possibility of simultaneity between EXP and AID, the authors first regress

(Continued) AID on INC, POP, and PS (i.e., the reduced-form regression). Let the error term in this
regression be w;. From this regression the calculated residual is w;. The authors then
regress EXP on AID, INC, POP, and w;, to obtain the following results:

EXP = —89.41 + 4.50AID + 0.00013INC — 0.518POP — 1.39W;
t=(—1.04) (5.89) (3.06) (—4.63) (-1.73)  (19.4.10)"
R2 =0.99

At the 5 percent level of significance, the coefficient of w; is not statistically significant, and
therefore, at this level, there is no simultaneity problem. However, at the 10 percent level
of significance, it is statistically significant, raising the possibility that the simultaneity
problem is present.

Incidentally, the OLS estimation of Eq. (19.4.8) is as follows:

EXP = —46.81 + 3.24AID + 0.00019INC — 0.597POP
t = (—0.56) (13.64) (8.12) (=5.71) (19.4.11)
R2 =0.993

Notice an interesting feature of the results given in Egs. (19.4.10) and (19.4.11): When
simultaneity is explicitly taken into account, the AID variable is less significant although
numerically it is greater in magnitude.

“19.5 Tests for Exogeneity

We noted earlier that it is the researcher’s responsibility to specify which variables are
endogenous and which are exogenous. This will depend on the problem at hand and the a
priori information the researcher has. But is it possible to develop a statistical test of
exogeneity, in the manner of Granger’s causality test?

The Hausman test discussed in Section 19.4 can be utilized to answer this question. Sup-
pose we have a three-equation model in three endogenous variables, Y, >, and Y3, and
suppose there are three exogenous variables, X, X,, and X3. Further, suppose that the first
equation of the model is

Yii = Bo + PoYoi + B3 Yai + o1 X + uys (19.5.1)

If ¥, and Y3 are truly endogenous, we cannot estimate Eq. (19.5.1) by OLS (why?). But
how do we find that out? We can proceed as follows. We obtain the reduced-form equations
for Y> and Y3 (Note: the reduced-form equations will have only predetermined variables on
the right-hand side). From these reduced-form equations, we obtain Y,; and Y3;, the pre-
dicted values of Y»; and Y3;, respectively. Then in the spirit of the Hausman test discussed
earlier, we can estimate the following equation by OLS:

Yii = Bo + BaYoi + Bs Vs + a1 Xy + Ao ¥o + As¥a +uy (19.5.2)

Using the F test, we test the hypothesis that A, = A3 = 0. If this hypothesis is rejected, Y>
and Y3 can be deemed endogenous, but if it is not rejected, they can be treated as exoge-
nous. For a concrete example, see Exercise 19.16.

*Optional.
T4As in footnote 12, the authors use AID rather than AID as the regressor.
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Summary and
Conclusions

N =

10.

. The problem of identification precedes the problem of estimation.
. The identification problem asks whether one can obtain unique numerical estimates of

the structural coefficients from the estimated reduced-form coefficients.

. If this can be done, an equation in a system of simultaneous equations is identified. If

this cannot be done, that equation is un- or under-identified.

. An identified equation can be just identified or overidentified. In the former case,

unique values of structural coefficients can be obtained; in the latter, there may be
more than one value for one or more structural parameters.

. The identification problem arises because the same set of data may be compatible with

different sets of structural coefficients, that is, different models. Thus, in the regression
of price on quantity only, it is difficult to tell whether one is estimating the supply func-
tion or the demand function, because price and quantity enter both equations.

. To assess the identifiability of a structural equation, one may apply the technique of

reduced-form equations, which expresses an endogenous variable solely as a function
of predetermined variables.

. However, this time-consuming procedure can be avoided by resorting to either the order

condition or the rank condition of identification. Although the order condition is easy to
apply, it provides only a necessary condition for identification. On the other hand, the rank
condition is both a necessary and sufficient condition for identification. If the rank condi-
tion is satisfied, the order condition is satisfied, too, although the converse is not true. In
practice, though, the order condition is generally adequate to ensure identifiability.

. In the presence of simultaneity, OLS is generally not applicable, as was shown in

Chapter 18. But if one wants to use it nonetheless, it is imperative to test for simul-
taneity explicitly. The Hausman specification test can be used for this purpose.

. Although in practice deciding whether a variable is endogenous or exogenous is a

matter of judgment, one can use the Hausman specification test to determine whether
a variable or group of variables is endogenous or exogenous.

Although they are in the same family, the concepts of causality and exogeneity are dif-
ferent and one may not necessarily imply the other. In practice it is better to keep those
concepts separate (see Section 17.14).

EXERCISES

Questions

19.1

19.2.

19.3.

19.4.

19.5.

. Show that the two definitions of the order condition of identification (see Sec-
tion 19.3) are equivalent.

Deduce the structural coefficients from the reduced-form coefficients given in
Egs. (19.2.25) and (19.2.27).

Obtain the reduced form of the following models and determine in each case whether
the structural equations are unidentified, just identified, or overidentified:

a. Chap. 18, Example 18.2.

b. Chap. 18, Example 18.3.

c. Chap. 18, Example 18.6.

Check the identifiability of the models of Exercise 19.3 by applying both the order
and rank conditions of identification.

In the model (19.2.22) of the text it was shown that the supply equation was overi-
dentified. What restrictions, if any, on the structural parameters will make this
equation just identified? Justify the restrictions you impose.
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19.6. From the model
Y = Bio + B2 Yor + yuuXie + uys
Yor = Bao + B Yir + v Xor + un
the following reduced-form equations are obtained:
Y1 = Iyo + M Xa + inXor + wy
Yoy = Ty + Moy X, + Mn Xor + vy
a. Are the structural equations identified?
b. What happens to identification if it is known a priori that y;; = 0?
19.7. Refer to Exercise 19.6. The estimated reduced-form equations are as follows:
Yi; =44+ 3X, +8Xy
Yoy =24 6X1, + 10Xy,
a. Obtain the values of the structural parameters.
b. How would you test the null hypothesis that y;; = 0?
19.8. The model
Y, = Bio + B2 Yor + yuuXie + uys
Yor = Bao + B Yie + ua
produces the following reduced-form equations:
Yi, =4+38Xy,
Yy =2+ 12Xy,
a. Which structural coefficients, if any, can be estimated from the reduced-form
coefficients? Demonstrate your contention.
b. How does the answer to (a) change if it is known a priori that (1) 81, = 0 and

(2) Bio = 0?
19.9. Determine whether the structural equations of the model given in Exercise 18.8 are
identified.

19.10. Refer to Exercise 18.7 and find out which structural equations can be identified.

19.11. Table 19.3 is a model in five equations with five endogenous variables Y and four
exogenous variables X:

R Coefficients of the Variables
Equation No. Yi Y Y; Yy Ys Xi X2 X3 X4
1 1 B2 0 B4 0 Y11 0 0 Y14
2 0 1 B23 B4 0 0 V22 Y23 0
3 B31 0 1 B34 B3s 0 0 Y33 Y34
4 0 Baz 0 1 0 Va1 0 2] 0
5 Bs1 0 0 Bsa 1 0 Y52 ¥s3 0

Determine the identifiability of each equation with the aid of the order and rank
conditions of identifications.

19.12. Consider the following extended Keynesian model of income determination:
Consumption function: C, =B+ Bt — BT +uy,
Investment function: I =ap+a Y1 +uy
Taxation function: Tt =yo+wnY: + us
Income identity: Y =C+ 1+ Gy
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19.13.

19.14.

19.15.

where C = consumption expenditure
Y = income
I = investment
T = taxes
G = government expenditure
u’s = the disturbance terms

In the model the endogenous variables are C, 7, 7, and Y and the predetermined vari-
ables are G and Y;_;.

By applying the order condition, check the identifiability of each of the equa-
tions in the system and of the system as a whole. What would happen if 7;, the in-
terest rate, assumed to be exogenous, were to appear on the right-hand side of the
investment function?

Refer to the data given in Table 18.1 of Chapter 18. Using these data, estimate the
reduced-form regressions (19.1.2) and (19.1.4). Can you estimate Sy and 8;? Show
your calculations. Is the model identified? Why or why not?

Suppose we propose yet another definition of the order condition of identifiability:
K>m+k—1

which states that the number of predetermined variables in the system can be no
less than the number of unknown coefficients in the equation to be identified. Show
that this definition is equivalent to the two other definitions of the order condition
given in the text.

A simplified version of Suits’s model of the watermelon market is as follows:"
Demand equation: P =ay+ a1(Q;/Ny) + ax(Y; /Ny) + a3 Fy +uy,
Crop supply function: O, = Bo + B1(P/W:) + B2Pi1 + B3Ci—1 + BaTi—1 + ux

where P = price
(Q/N) = per capita quantity demanded
(Y/N) = per capita income
F; = freight costs
(P/ W) = price relative to the farm wage rate
C = price of cotton
T = price of other vegetables
N = population

P and Q are the endogenous variables.
a. Obtain the reduced form.
b. Determine whether the demand, the supply, or both functions are identified.

Empirical Exercises

19.16.

Consider the following demand-and-supply model for money:

Money demand: ~ M? = By + 1Y, + PR + B3 P, + us
Money supply: M} =g +a1Y; +uy

“D. B. Suits, “An Econometric Model of the Watermelon Market,” Journal of Farm Economics, vol. 37,
1955, pp. 237-251.
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TABLE 19.4

Money, GDP, Interest Observation M, GDP TBRATE CPI
Rate, and Consumer 1970 626.5 3,771 .9 6.458 38.8
Price Index, United 1971 710.3 3,898.6 4.348 40.5
States, 1970-2006 1972 802.3 4,105.0 4.071 41.8
S ' _ 1973 855.5 4,341.5 7.041 44 .4
P T 1974 902.1 4,319.6 7.886 49.3
B-60, B-69, B-73. 1975 1,016.2 4,311.2 5.838 53.8
1976 1,152.0 4,540.9 4.989 56.9
1977 1,270.3 4,750.5 5.265 60.6
1978 1,366.0 5,015.0 7.221 65.2
1979 1,473.7 5,173.4 10.041 72.6
1980 1,599.8 5,161.7 11.506 82.4
1981 1,755.5 5,291.7 14.029 90.9
1982 1,910.1 5,189.3 10.686 96.5
1983 2,126.4 5,423.8 8.63 99.6
1984 2,309.8 5,813.6 9.58 103.9
1985 2,495.5 6,053.7 7.48 107.6
1986 2,732.2 6,263.6 5.98 109.6
1987 2,831.3 6,475.1 5.82 113.6
1988 2,994.3 6,742.7 6.69 118.3
1989 3,158.3 6,981.4 8.12 124.0
1990 3,277.7 7,112.5 7.51 130.7
1991 3,378.3 7,100.5 5.42 136.2
1992 3,431.8 7,336.6 3.45 140.3
1993 3,482.5 7,532.7 3.02 144.5
1994 3,498.5 7,835.5 4.29 148.2
1995 3,641.7 8,031.7 5.51 152.4
1996 3,820.5 8,328.9 5.02 156.9
1997 4,035.0 8,703.5 5.07 160.5
1998 4,381.8 9,066.9 4.81 163.0
1999 4,639.2 9,470.3 4.66 166.6
2000 4,921.7 9,817.0 5.85 172.2
2001 5,433.5 9,890.7 3.45 177.1
2002 5,779.2 10,048.8 1.62 179.9
2003 6,071.2 10,301.0 1.02 184.0
2004 6,421.6 10,675.8 1.38 188.9
2005 6,691.7 11,003.4 3.16 195.3
2006 7,035.5 11,319.4 4.73 201.6
Notes: M, = M, Money supply (billions of dollars).

GDP = gross domestic product (billions of dollars).
TBRATE = 3-month Treasury bill rate, %.
CPI = Consumer Price Index (1982-1984 = 100).

where M =money
Y = income
R = rate of interest
P =price
u’s = error terms
Assume that R and P are exogenous and M and Y are endogenous. Table 19.4 gives

data on M (M, definition), Y (GDP), R (3-month Treasury bill rate) and P (Con-
sumer Price Index), for the United States for 1970-2006.
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19.17.

a. Is the demand function identified?

b. Is the supply function identified?

c. Obtain the expressions for the reduced-form equations for M and Y.

d. Apply the test of simultaneity to the supply function.

e. How would we find out if Y in the money supply function is in fact endogenous?

The Hausman test discussed in the text can also be conducted in the following way.
Consider Eq. (19.4.7):

O: = Bo + B1 P + Brve + uy

a. Since P, and v; have the same coefficients, how would you test that in a given
application that is indeed the case? What are the implications of this?

b. Since P, is uncorrelated with uy, by design (why?), one way to find out if P, is
exogenous is to see if v, is correlated with u,;. How would you go about testing
this? Which test do you use? (Hint: Substitute P, from [19.4.6] into Eq. [19.4.7].)



Chapter 2 O

Simultaneous-Equation

Methods

Having discussed the nature of the simultaneous-equation models in the previous two chap-
ters, in this chapter we turn to the problem of estimation of the parameters of such models.
At the outset it may be noted that the estimation problem is rather complex because there
are a variety of estimation techniques with varying statistical properties. In view of the in-
troductory nature of this text, we shall consider only a few of these techniques. Our discus-
sion will be simple and often heuristic, the finer points being left to the references.

20.1 Approaches to Estimation

If we consider the general M equations model in M endogenous variables given in Eq. (19.1.1),
we may adopt two approaches to estimate the structural equations, namely, single-equation
methods, also known as limited information methods, and system methods, also known
as full information methods. In the single-equation methods to be considered shortly, we
estimate each equation in the system (of simultaneous equations) individually, taking into
account any restrictions placed on that equation (such as exclusion of some variables) with-
out worrying about the restrictions on the other equations in the system,! hence the name
limited information methods. In the system methods, on the other hand, we estimate all the
equations in the model simultaneously, taking due account of all restrictions on such equa-
tions by the omission or absence of some variables (recall that for identification such
restrictions are essential), hence the name full information methods.
As an example, consider the following four-equations model:

Yie= B+ + B1aYar + Bi3Ya + + yuXi + + uy,
Yor=Boo + + B23Y3 + a1 X1 + v X + uy
Y3i=Bso+ B Y+ + BsaYu + yuiXi + vXo + + uy,
Yar = Bao + + B Yo + vasXa + uy
(20.1.1)

TFor the purpose of identification, however, information provided by other equations will have to be
taken into account. But as noted in Chapter 19, estimation is possible only in the case of (fully or
over-) identified equations. In this chapter we assume that the identification problem is solved using
the techniques of Chapter 19.

711
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where the Y’s are the endogenous variables and the X’’s are the exogenous variables. If we
are interested in estimating, say, the third equation, the single-equation methods will con-
sider this equation only, noting that variables Y, and X3 are excluded from it. In the systems
methods, on the other hand, we try to estimate all four equations simultaneously, taking into
account all the restrictions imposed on the various equations of the system.

To preserve the spirit of simultaneous-equation models, ideally one should use the sys-
tems method, such as the full information maximum likelihood (FIML) method.” In
practice, however, such methods are not commonly used for a variety of reasons. First, the
computational burden is enormous. For example, the comparatively small (20 equations)
1955 Klein—Goldberger model of the U.S. economy had 151 nonzero coefficients, of which
the authors estimated only 51 coefficients using the time series data. The Brookings-Social
Science Research Council (SSRC) econometric model of the U.S. economy published in
1965 initially had 150 equations.? Although such elaborate models may furnish finer details
of the various sectors of the economy, the computations are a stupendous task even in these
days of high-speed computers, not to mention the cost involved. Second, the systems meth-
ods, such as FIML, lead to solutions that are highly nonlinear in the parameters and are
therefore often difficult to determine. Third, if there is a specification error (say, a wrong
functional form or exclusion of relevant variables) in one or more equations of the system,
that error is transmitted to the rest of the system. As a result, the systems methods become
very sensitive to specification errors.

In practice, therefore, single-equation methods are often used. As Klein puts it,

Single equation methods, in the context of a simultaneous system, may be less sensitive to
specification error in the sense that those parts of the system that are correctly specified may
not be affected appreciably by errors in specification in another part.*

In the rest of the chapter we shall deal with single-equation methods only. Specifically,
we shall discuss the following single-equation methods:

1. Ordinary least squares (OLS)
2. Indirect least squares (ILS)
3. Two-stage least squares (2SLS)

20.2 Recursive Models and Ordinary Least Squares

We saw in Chapter 18 that, because of the interdependence between the stochastic distur-
bance term and the endogenous explanatory variable(s), the OLS method is inappropriate
for the estimation of an equation in a system of simultaneous equations. If applied erro-
neously, then, as we saw in Section 18.3, the estimators are not only biased (in small sam-
ples) but also inconsistent; that is, the bias does not disappear no matter how large the
sample size. There is, however, one situation where OLS can be applied appropriately even
in the context of simultaneous equations. This is the case of the recursive, triangular, or

2For a simple discussion of this method, see Carl F. Christ, Econometric Models and Methods, John
Wiley & Sons, New York, 1966, pp. 395-401.

3James S. Duesenberry, Gary Fromm, Lawrence R. Klein, and Edwin Kuh, eds., A Quarterly Model of the
United States Economy, Rand McNally, Chicago, 1965.

“4Lawrence R. Klein, A Textbook of Econometrics, 2d ed., Prentice Hall, Englewood Cliffs, NJ, 1974,

p. 150.
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Recursive model.
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causal models. To see the nature of these models, consider the following three-equation
system:

Yi:=Bo + Y1 + v12Xo + uyy
Yy = Bao + Bor1Y1s + vuXir + Yo Xor + uy (20.2.1)
Y3 = Bso + Bs1Y1r + B2Yor + v Xie + v Xor + us;

where, as usual, the Y’s and the X’s are, respectively, the endogenous and exogenous
variables. The disturbances are such that

cov (U1, Uzs) = CoV (U4, Uz) = COV (U, Uz) =0

that is, the same-period disturbances in different equations are uncorrelated (technically, this
is the assumption of zero contemporaneous correlation).

Now consider the first equation of (20.2.1). Since it contains only the exogenous vari-
ables on the right-hand side and since by assumption they are uncorrelated with the distur-
bance term uy,, this equation satisfies the critical assumption of the classical OLS, namely,
uncorrelatedness between the explanatory variables and the stochastic disturbances.
Hence, OLS can be applied straightforwardly to this equation. Next consider the second
equation of (20.2.1), which contains the endogenous variable Y| as an explanatory variable
along with the nonstochastic X’s. Now OLS can also be applied to this equation, provided
Y1, and uy, are uncorrelated. Is this so? The answer is yes because u;, which affects Y7, is by
assumption uncorrelated with u,. Therefore, for all practical purposes, Y; is a predeter-
mined variable insofar as Y5 is concerned. Hence, one can proceed with OLS estimation of
this equation. Carrying this argument a step further, we can also apply OLS to the third
equation in (20.2.1) because both Y; and Y, are uncorrelated with us3.

Thus, in the recursive system OLS can be applied to each equation separately. Actually, we
do not have a simultaneous-equation problem in this situation. From the structure of such
systems, it is clear that there is no interdependence among the endogenous variables. Thus, Y;
affects Y,, but ¥, does not affect Y;. Similarly, ¥; and Y; influence Y3 without, in turn, being
influenced by Y3. In other words, each equation exhibits a unilateral causal dependence, hence
the name causal models.® Schematically, we have Figure 20.1.

Uy M
5 Y, (X1, X5)

us Y;

*The alternative name triangular stems from the fact that if we form the matrix of the coefficients of
the endogenous variables given in Eq. (20.2.1), we obtain the following triangular matrix:

Yi Yo Y3
Equation 1 | 1 0 o0
Equation2 | g1 1 0
Equation 3 | B31 B3z 1

Note that the entries above the main diagonal are zeros (why?).
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As an example of a recursive system, one may postulate the following model of wage
and price determination:

Price equation: P, = Bio+ BuWi—1 + PraRs + BisM, + BuaL, +uy,
Wage equation: W, = Bao + B21UN; + B32 P + uny (20.2.2)

where P = rate of change of price per unit of output

W = rate of change of wages per employee

R = rate of change of price of capital

M = rate of change of import prices

L = rate of change of labor productivity
UN = unemployment rate, %°

The price equation postulates that the rate of change of price in the current period is a
function of the rates of change in the prices of capital and of raw material, the rate of
change in labor productivity, and the rate of change in wages in the previous period. The
wage equation shows that the rate of change in wages in the current period is determined
by the current period rate of change in price and the unemployment rate. It is clear that the
causal chain runs from W,_; — P, — W,, and hence OLS may be applied to estimate the
parameters of the two equations individually.

Although recursive models have proved to be useful, most simultaneous-equation mod-
els do not exhibit such a unilateral cause-and-effect relationship. Therefore, OLS, in gen-
eral, is inappropriate to estimate a single equation in the context of a simultaneous-equation
model.”

There are some who argue that, although OLS is generally inapplicable to simultaneous-
equation models, one can use it, if only as a standard or norm of comparison. That is, one
can estimate a structural equation by OLS, with the resulting properties of biasedness,
inconsistency, etc. Then the same equation may be estimated by other methods especially
designed to handle the simultaneity problem and the results of the two methods compared,
at least qualitatively. In many applications the results of the inappropriately applied
OLS may not differ very much from those obtained by more sophisticated methods, as
we shall see later. In principle, one should not have much objection to the production of
the results based on OLS so long as estimates based on alternative methods devised for
simultaneous-equation models are also given. In fact, this approach might give us some
idea about how badly OLS does in situations when it is applied inappropriately.

5Note: The dotted symbol means “time derivative.” For example, P = dP/dt. For discrete time series,
dP/dt is sometimes approximated by A P/At, where the symbol A is the first difference operator,
which was originally introduced in Chapter 12.

7It is important to keep in mind that we are assuming that the disturbances across equations are
contemporaneously uncorrelated. If this is not the case, we may have to resort to the Zellner SURE
(seemingly unrelated regressions) estimation technique to estimate the parameters of the recursive
system. See A. Zellner, “An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests
for Aggregation Bias,” Journal of the American Statistical Association, vol. 57, 1962, pp. 348-368.

8t may also be noted that in small samples the alternative estimators, like the OLS estimators, are also
biased. But the OLS estimator has the “virtue” that it has minimum variance among these alternative
estimators. But this is true of small samples only.
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20.3 Estimation of a Just Identified Equation: The Method
of Indirect Least Squares (ILS)

For a just or exactly identified structural equation, the method of obtaining the estimates of
the structural coefficients from the OLS estimates of the reduced-form coefficients is known
as the method of indirect least squares (ILS), and the estimates thus obtained are known
as the indirect least-squares estimates. ILS involves the following three steps:

Step 1. We first obtain the reduced-form equations. As noted in Chapter 19, these
reduced-form equations are obtained from the structural equations in such a manner
that the dependent variable in each equation is the only endogenous variable and is a
function solely of the predetermined (exogenous or lagged endogenous) variables and
the stochastic error term(s).

Step 2. We apply OLS to the reduced-form equations individually. This operation is
permissible since the explanatory variables in these equations are predetermined and
hence uncorrelated with the stochastic disturbances. The estimates thus obtained are
consistent.’

Step 3. We obtain estimates of the original structural coefficients from the estimated
reduced-form coefficients obtained in Step 2. As noted in Chapter 19, if an equation is
exactly identified, there is a one-to-one correspondence between the structural and
reduced-form coefficients; that is, one can derive unique estimates of the former from
the latter.

As this three-step procedure indicates, the name ILS derives from the fact that structural
coefficients (the object of primary enquiry in most cases) are obtained indirectly from the
OLS estimates of the reduced-form coefficients.

An lllustrative Example

Consider the demand-and-supply model introduced in Section 19.2, which for convenience
is given below with a slight change in notation:

Demand function: Or=ap+oa1 P+ X, +uy, (20.3.1)
Supply function: Or=PBo+Bi1 P +uy (20.3.2)

where O = quantity
P = price
X = income or expenditure

Assume that X is exogenous. As noted previously, the supply function is exactly identified
whereas the demand function is not identified.
The reduced-form equations corresponding to the preceding structural equations are

Pt = H()+H]Xt+wt (20.3-3)
O, =1L + X, + v (20.3.4)

°In addition to being consistent, the estimates “may be best unbiased and/or asymptotically efficient,
depending respectively upon whether (i) the z's [= X’s] are exogenous and not merely predeter-
mined [i.e., do not contain lagged values of endogenous variables] and/or (ii) the distribution of the
disturbances is normal.” See W. C. Hood and Tjalling C. Koopmans, Studies in Econometric Method,
John Wiley & Sons, New York, 1953, p. 133.
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where the IT’s are the reduced-form coefficients and are (nonlinear) combinations of the
structural coefficients, as shown in Egs. (19.2.16) and (19.2.18), and where w and v are
linear combinations of the structural disturbances u; and u5.

Notice that each reduced-form equation contains only one endogenous variable, which
is the dependent variable and which is a function solely of the exogenous variable X
(income) and the stochastic disturbances. Hence, the parameters of the preceding reduced-
form equations may be estimated by OLS. These estimates are

A Zptxt

M, = 20.3.5
W 7032)

fly=P -, X (20.3.6)

~ Z‘Itxt

I; = 20.3.7
W 037
=0 -ILX (20.3.8)

where the lowercase letters, as usual, denote deviations from sample means and where 0
and P are the sample mean values of O and P. As noted previously, the I1,’s are consistent
estimators and under appropriate assumptions are also minimum variance unbiased or
asymptotically efficient (see footnote 9).

Since our primary objective is to determine the structural coefficients, let us see if we
can estimate them from the reduced-form coefficients. Now as shown in Section 19.2, the
supply function is exactly identified. Therefore, its parameters can be estimated uniquely
from the reduced-form coefficients as follows:

Bo =TI, — BilI, and B = s
I
Hence, the estimates of these parameters can be obtained from the estimates of the
reduced-form coefficients as

Bo = T, — Bi 11, (20.3.9)
.

= 20.3.10
B i, ( )

which are the ILS estimators. Note that the parameters of the demand function cannot be
thus estimated (however, see Exercise 20.13).

To give some numerical results, we obtained the data shown in Table 20.1. First we esti-
mate the reduced-form equations, regressing separately price and quantity on per capita
real consumption expenditure. The results are as follows:

P, = 90.9601 + 0.0007X,

se= (4.0517) (0.0002) (20.3.11)
1 = (22.4499) (3.0060) R? = (0.2440)
0, = 59.7618 + 0.0020X,
(1.5600)  (0.00009) (20.3.12)
1 = (38.3080) (20.9273) R*=0.9399

Using Egs. (20.3.9) and (20.3.10), we obtain these ILS estimates:

fo = —183.7043 (20.3.13)
Bi= 2.6766 (20.3.14)
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TABLE 20.1

. Index of Crop Index of Crop Prices Real per Capita
Crop Production, . ! .
Crop Prices, and ' Production Received by Farmers  Personal ansumptlon
. Observation (1996 = 100), Q (1990-1992 = 100), P Expenditure, X

per Capita Personal

Consumption 1975 66 88 4,789

Expenditures, 2007 1976 67 87 5,282

Dollars, United 1977 71 83 5,804

States, 1975-2004 1978 73 89 6,417

Soumce. £  Revortof he 1979 78 98 7,073

Presdent, 2007 Daaon Q0 1980 75 107 7,716

(Table B-99), on P 1981 81 111 8,439

gz';i: g:;?)l)’ and on X 1982 82 98 8,945

) 1983 71 108 9,775

1984 81 111 10,589
1985 85 98 11,406
1986 82 87 12,048
1987 84 86 12,766
1988 80 104 13,685
1989 86 109 14,546
1990 90 103 15,349
1991 90 101 15,722
1992 96 101 16,485
1993 91 102 17,204
1994 101 105 18,004
1995 96 112 18,665
1996 100 127 19,490
1997 104 115 20,323
1998 105 107 21,291
1999 108 97 22,491
2000 108 96 23,862
2001 108 99 24,722
2002 107 105 25,501
2003 108 111 26,463
2004 112 117 27,937

Therefore, the estimated ILS regression is'’

O, = —183.7043 + 2.6766 P, (20.3.15)

For comparison, we give the results of the (inappropriately applied) OLS regression of
QonP:

A

0, = 20.89 + 0.673P,
se = (23.04) (0.2246) (20.3.16)
t= (0.91) (2.99) R? =0.2430

These results show how OLS can distort the “true” picture when it is applied in inappro-
priate situations.

10We have not presented the standard errors of the estimated structural coefficients because, as
noted previously, these coefficients are generally nonlinear functions of the reduced-form coefficients
and there is no simple method of estimating their standard errors from the standard errors of the
reduced-form coefficients. For large-sample size, however, standard errors of the structural
coefficients can be obtained approximately. For details, see Jan Kmenta, Elements of Econometrics,
Macmillan, New York, 1971, p. 444.
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Properties of ILS Estimators

We have seen that the estimators of the reduced-form coefficients are consistent and under
appropriate assumptions also best unbiased or asymptotically efficient (see footnote 9). Do
these properties carry over to the ILS estimators? It can be shown that the ILS estimators
inherit all the asymptotic properties of the reduced-form estimators, such as consistency
and asymptotic efficiency. But (the small sample) properties such as unbiasedness do not
generally hold true. It is shown in Appendix 20A, Section 20A.1, that the ILS estimators S,
and B, of the supply function given previously are biased but the bias disappears as the
sample size increases indefinitely (that is, the estimators are consistent).!!

20.4 Estimation of an Overidentified Equation: The Method
of Two-Stage Least Squares (2SLS)

Consider the following model:

Income function: Yi,= B+ + BuiYo + yuXis + yi2Xo + uyy
(20.4.1)

Money supply Y2 = Bro + Bo1 Y1 + Uy,

function: (20.4.2)

where Y7 = income
Y, = stock of money
X = investment expenditure
X, = government expenditure on goods and services

The variables X; and X; are exogenous.

The income equation, a hybrid of quantity-theory—Keynesian approaches to income de-
termination, states that income is determined by money supply, investment expenditure, and
government expenditure. The money supply function postulates that the stock of money is
determined (by the Federal Reserve System) on the basis of the level of income. Obviously,
we have a simultaneous-equation problem, which can be checked by the simultaneity test
discussed in Chapter 19.

Applying the order condition of identification, we can see that the income equation is
underidentified whereas the money supply equation is overidentified. There is not much
that can be done about the income equation short of changing the model specification. The
overidentified money supply function may not be estimated by ILS because there are two
estimates of 8,1 (the reader should verify this via the reduced-form coefficients).

As a matter of practice, one may apply OLS to the money supply equation, but the
estimates thus obtained will be inconsistent in view of the likely correlation between
the stochastic explanatory variable Y, and the stochastic disturbance term u,. Suppose,
however, we find a “proxy” for the stochastic explanatory variable Y; such that, although
“resembling” Y (in the sense that it is highly correlated with Y}), it is uncorrelated with u;.
Such a proxy is also known as an instrumental variable (see Chapter 17). If one can find
such a proxy, OLS can be used straightforwardly to estimate the money supply function.

11Intumvely this can be seen as follows: E(81) = g1 if E(l_[g/l_h) = (1'[3/1'[1) Now even if
E(f13) = I3 and E(f1y), = Iy, it can be shown that E(I13/I17) # E(I13)/E (T11); that is, the
expectation of the ratio of two variables is not equal to the ratio of the expectations of the two
variables. However, as shown in Appendix 20A.1, plim (IT3/I1;) = plim (I13)/plim (IT;) = M3/;
since 1'13 and l'I1 are consistent estimators.
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But how does one obtain such an instrumental variable? One answer is provided by the two-
stage least squares (2SLS), developed independently by Henri Theil'> and Robert
Basmann.'3 As the name indicates, the method involves two successive applications of
OLS. The process is as follows:

Stage 1. To get rid of the likely correlation between Y| and u,, regress first Y} on all the
predetermined variables in the whole system, not just that equation. In the present case,
this means regressing Y7 on X; and X; as follows:

Yy, = ﬁo + ﬁth + ﬁzXz; + (2043)
where #, are the usual OLS residuals. From Eq. (20.4.3) we obtain
Vi = o + X, + T Xy, (20.4.4)

where f’l ; 1s an estimate of the mean value of Y conditional upon the fixed X’s. Note
that Eq. (20.4.3) is nothing but a reduced-form regression because only the exogenous
or predetermined variables appear on the right-hand side.

Equation (20.4.3) can now be expressed as

Yi = Yi + (20.4.5)

which shows that the stochastic Y, consists of two parts: Y 11, which is a linear
combination of the nonstochastic X’s, and a random component #,. Following the
OLS theory, Yy, and #, are uncorrelated. (Why?)

Stage 2. The overidentified money supply equation can now be written as

Yoo = oo + Bor1(Yis + i) + ua
= Bao + Bo1 Vi + (uz + Boriiy) (20.4.6)
= Bao + B Y1y +u}

where u} = uy + Bt

Comparing Eq. (20.4.6) with Eq. (20.4.2), we see that they are very similar in ap-
pearance, the only difference being that Y is replaced by Y,. What is the advantage of
Eq. (20.4.6)? It can be shown that although Y] in the original money supply equation is
correlated or likely to be correlated with the disturbance term u; (hence rendering OLS
inappropriate), Yy, in Eq. (20.4.6) is uncorrelated with uy asymptotically, that is, in the
large sample (or more accurately, as the sample size increases indefinitely). As a result,
OLS can be applied to Eq. (20.4.6), which will give consistent estimates of the para-
meters of the money supply function.'*

"?Henri Theil, “Repeated Least-Squares Applied to Complete Equation Systems,” The Hague: The
Central Planning Bureau, The Netherlands, 1953 (mimeographed).

3Robert L. Basmann, “A Generalized Classical Method of Linear Estimation of Coefficients in a
Structural Equation,” Econometrica, vol. 25, 1957, pp. 77-83.

But note that in small samples Y1, is likely to be correlated with u¥. The reason is as follows: From
Eq. (20.4.4) we see that Y1, is a weighted linear combination of the predetermined X's, with 1's as
the weights. Now even if the predetermined variables are truly nonstochastic, the II's, being estima-
tors, are stochastic. Therefore, Y1, is stochastic too. Now from our discussion of the reduced-form
equations and indirect least-squares estimation, it is clear that the reduced-coefficients, the I1's, are
functions of the stochastic disturbances, such as u,. And since ¥1; depends on the I1’s, it is likely to be
correlated with u,, which is a component of u}. As a result, Vi is expected to be correlated with uj.
But as noted previously, this correlation disappears as the sample size tends to infinity. The upshot of
all this is that in small samples the 2SLS procedure may lead to biased estimation.
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As this two-stage procedure indicates, the basic idea behind 2SLS is to “purify” the sto-
chastic explanatory variable Y; of the influence of the stochastic disturbance u,. This goal
is accomplished by performing the reduced-form regression of Y} on all the predetermined
variables in the system (Stage 1), obtaining the estimates )% 1, and replacing Y, in the orig-
inal equation by the estimated Y1,, and then applying OLS to the equation thus transformed
(Stage 2). The estimators thus obtained are consistent; that is, they converge to their true
values as the sample size increases indefinitely.

To illustrate 2SLS further, let us modify the income—money supply model as follows:

Yie= Bio + PraYor + yirXi + yioXoy + uy (20.4.7)
Yo = Boo + Bar Y + Y235, + VouXay + un, (20.4.8)

where, in addition to the variables already defined, X3 = income in the previous time period
and X4 = money supply in the previous period. Both X3 and Xy are predetermined.

It can be readily verified that both Egs. (20.4.7) and (20.4.8) are overidentified. To apply
2SLS, we proceed as follows: In Stage 1 we regress the endogenous variables on a// the
predetermined variables in the system. Thus,

Yie = Mo + [ X, + T Xo, + T3 X, + g Xa + 4y (20.4.9)
Yar = Moo + o1 Xy, + T Xor + Tlas X + Tlag Xy + iy (20.4.10)

In Stage 2 we replace Y| and Y, in the original (structural) equations by their estimated val-
ues from the preceding two regressions and then run the OLS regressions as follows:

Yie = Bro+ Biatar + yuXis + vinXo, + 1, (20.4.11)
Yar = oo + B Vie + yo3 Xz + yaa X, + 15, (20.4.12)

where uf, = w1 + Biatta, and @k, = uy + Porily,. The estimates thus obtained will be
consistent.
Note the following features of 2SLS.

1. It can be applied to an individual equation in the system without directly taking into
account any other equation(s) in the system. Hence, for solving econometric models in-
volving a large number of equations, 2SLS offers an economical method. For this rea-
son the method has been used extensively in practice.

2. Unlike ILS, which provides multiple estimates of parameters in the overidentified
equations, 2SLS provides only one estimate per parameter.

3. Itis easy to apply because all one needs to know is the total number of exogenous or pre-
determined variables in the system without knowing any other variables in the system.

4. Although specially designed to handle overidentified equations, the method can also
be applied to exactly identified equations. But then ILS and 2SLS will give identical
estimates. (Why?)

5. If the R? values in the reduced-form regressions (that is, Stage 1 regressions) are very
high, say, in excess of 0.8, the classical OLS estimates and 2SLS estimates will be very
close. But this result should not be surprising because if the R? value in the first stage
is very high, it means that the estimated values of the endogenous variables are very
close to their actual values, and hence the latter are less likely to be correlated with
the stochastic disturbances in the original structural equations. (Why?)! If, however, the

5In the extreme case of R> = 1 in the first-stage regression, the endogenous explanatory variable in
the original (overidentified) equation will be practically nonstochastic (why?).
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R? values in the first-stage regressions are very low, the 2SLS estimates will be practi-
cally meaningless because we shall be replacing the original ¥’s in the second-stage re-
gressions by the estimated Y’s from the first-stage regressions, which will essentially
represent the disturbances in the first-stage regressions. In other words, in this case, the
¥’s will be very poor proxies for the original Y’s.

6. Notice that in reporting the ILS regression in Eq. (20.3.15) we did not state the standard
errors of the estimated coefficients (for reasons explained in footnote 10). But we can do
this for the 2SLS estimates because the structural coefficients are directly estimated
from the second-stage (OLS) regressions. There is, however, a caution to be exercised.
The estimated standard errors in the second-stage regressions need to be modified
because, as can be seen from Eq. (20.4.6), the error term u} is, in fact, the original error
term uy, plus Ba;i,. Hence, the variance of u} is not exactly equal to the variance of the
original uy,. However, the modification required can be easily effected by the formula
given in Appendix 20A, Section 20A.2.

7. In using the 2SLS, bear in mind the following remarks of Henri Theil:

The statistical justification of the 2SLS is of the large-sample type. When there are no lagged
endogenous variables, . . . the 2SLS coefficient estimators are consistent if the exogenous
variables are constant in repeated samples and if the disturbance[s] [appearing in the various
behavioral or structural equations] . . . are independently and identically distributed with zero
means and finite variances. . . . If these two conditions are satisfied, the sampling distribution
of 2SLS coefficient estimators becomes approximately normal for large samples. . . .

When the equation system contains lagged endogenous variables, the consistency and
large-sample normality of the 2SLS coefficient estimators require an additional condition, . . .
that as the sample increases the mean square of the values taken by each lagged endogenous
variable converges in probability to a positive limit. . . .

If [the disturbances appearing in the various structural equations are] not independently
distributed, lagged endogenous variables are not independent of the current operation of the
equation system . . ., which means these variables are not really predetermined. If these
variables are nevertheless treated as predetermined in the 2SLS procedure, the resulting
estimators are not consistent.'®

20.5 2SLS: A Numerical Example

To illustrate the 2SLS method, consider the income—money supply model given previously
in Egs. (20.4.1) and (20.4.2). As shown, the money supply equation is overidentified. To
estimate the parameters of this equation, we resort to the two-stage least-squares method.
The data required for analysis are given in Table 20.2; this table also gives some data that
are required to answer some of the questions given in the exercises.

Stage 1 Regression

We first regress the stochastic explanatory variable income Y}, represented by GDP, on the
predetermined variables private investment X, and government expenditure X,, obtaining
the following results:

Vi, =2689.848 +  1.8700X;, + 2.0343X,
se= (67.9874)  (0.1717) (0.1075) (20.5.1)
t= (39.5639)  (10.8938)  (18.9295)  R*=0.9964

"6Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978, pp. 341-342.
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(T}’:\)?,’qu f%‘éDEXP, Observation ~ GDP(Y¥;)  M2(Y)  GPDI(X;)  FEDEXP (X2  TB6 (X3)
TB6, USA, 1970-2005 1970 3,771.9 626.5 427.1 201.1 6.562
. _ 1971 3,898.6 710.3 475.7 220.0 4.511
o T 1972 4,105.0 802.3 532.1 244.4 4.466
B-69, B-54, and B-73. 1973 4,341.5 855.5 594.4 261.7 7178
1974 4,319.6 902.1 550.6 2933 7.926
1975 43112 1,016.2 453.1 346.2 6.122
1976 4,540.9  1,152.0 544.7 374.3 5.266
1977 4,750.5  1,2703 627.0 407.5 5.510
1978 50150  1,366.0 702.6 450.0 7.572
1979 51734 1,473.7 725.0 497.5 10.017
1980 5161.7  1,599.8 645.3 585.7 11.374
1981 52917 1,7554 704.9 672.7 13.776
1982 5189.3  1,910.3 606.0 748.5 11.084
1983 54238 21265 662.5 815.4 8.75
1984 5813.6 23100 857.7 877.1 9.80
1985 6,053.7  2,495.7 849.7 948.2 7.66
1986 6,263.6  2,732.4 843.9 1,006.0 6.03
1987 64751  2,831.4 870.0 1,041.6 6.05
1988 6,742.7  2,994.5 890.5 1,092.7 6.92
1989 6,981.4  3,158.5 926.2 1,167.5 8.04
1990 71125 3,278.6 895.1 1,253.5 7.47
1991 7,100.5  3,379.1 822.2 1,315.0 5.49
1992 7,336.6  3,432.5 889.0 1,444.6 3.57
1993 7,532.7  3,484.0 968.3 1,496.0 3.14
1994 7,835.5  3,497.5  1,099.6 1,533.1 4.66
1995 8,031.7  3,6404  1,134.0 1,603.5 5.59
1996 8,328.9  3,815.1 1,2343 1,665.8 5.09
1997 8,703.5  4,031.6  1,387.7 1,708.9 5.18
1998 9,066.9  4,379.0  1,524.1 1,734.9 4.85
1999 9,470.3  4,641.1 1,642.6 1,787.6 4.76
2000 9,817.0 49209  1,7355 1,864.4 5.92
2001 9,890.7 54303  1,598.4 1,969.5 3.39
2002 10,0488  5,774.1 1,557.1 2,101.1 1.69
2003 10,301.0  6,0620  1,613.1 2,252.1 1.06
2004 10,7035  6,411.7  1,770.6 2,383.0 1.58
2005 11,0486  6,669.4  1,866.3 2,555.9 3.40

Notes: Yi = GDP = gross domestic product (billions of chained 2000 dollars).
Y> = M2 = M2 money supply (billions of dollars).
X, = GPDI = gross private domestic investment (billions of chained 2000 dollars).
X, = FEDEXP = Federal government expenditure (billions of dollars).
X3 = TB6 = 6-month Treasury bill rate (%).

Stage 2 Regression
We now estimate the money supply function (20.4.2), replacing the endogenous variable ¥;

by Y estimated from Eq. (20.5.1) (= Y}). The results are as follows:
Vo = —2440.180 4+  0.79207),
se = (127.3720) (0.0178) (20.5.2)
t= (—19.1579) (44.5246) R? =0.9831
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As we pointed out previously, the estimated standard errors given in Eq. (20.5.2) need to
be corrected in the manner suggested in Appendix 20.A, Section 20A.2. Effecting
this correction (most econometric packages can do it now), we obtain the following
results:

Yy = —2440.180 + 0.79207Y,,
se= (126.9598)  (0.0212) (20.5.3)
t= (—17.3149) (37.3057) R? = 0.9803

As noted in Appendix 20A, Section 20A.2, the standard errors given in Eq. (20.5.3) do
not differ much from those given in Eq. (20.5.2) because the R? in Stage 1 regression is
very high.

OLS Regression

For comparison, we give the regression of money stock on income as shown in Eq. (20.4.2)
without “purging” the stochastic Y, of the influence of the stochastic disturbance term.

Vo = —2195.468 + 0.7911Y,
se=(126.6460)  (0.0211) (20.5.4)
t= (—17.3354) (37.3812) R? = 0.9803

Comparing the “inappropriate” OLS results with the Stage 2 regression, we see that the
two regressions are virtually the same. Does this mean that the 2SLS procedure is worth-
less? Not at all. That in the present situation the two results are practically identical should
not be surprising because, as noted previously, the R? value in the first stage is very high,
thus making the estimated )% 1¢ virtually identical with the actual Y;;. Therefore, in this case
the OLS and second-stage regressions will be more or less similar. But there is no guaran-
tee that this will happen in every application. An implication, then, is that in overidentified
equations one should not accept the classical OLS procedure without checking the second-
stage regression(s).

Simultaneity between GDP and Money Supply

Let us find out if GDP (Y}) and money supply (Y>) are mutually dependent. For this purpose
we use the Hausman test of simultaneity discussed in Chapter 19.

First we regress GDP on X (investment expenditure) and X, (government expenditure),
the exogenous variables in the system (i.e., we estimate the reduced-form regression). From
this regression we obtain the estimated GDP and the residuals ¥, as suggested in
Eq. (19.4.7). Then we regress money supply on estimated GDP and v, to obtain the follow-
ing results:

Yo = —2198.297 + 0.7915Y;, + 0.6984%,
se=(129.0548)  (0.0215)  (0.2970) (20.5.5)
t= (—17.0338) (36.70016)  (2.3511)

Since the ¢ value of ¥, is statistically significant (the p value is 0.0263), we cannot reject the
hypothesis of simultaneity between money supply and GDP, which should not be surpris-
ing. (Note: Strictly speaking, this conclusion is valid only in large samples; technically, it
is only valid as the sample size increases indefinitely.)
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Hypothesis Testing

Suppose we want to test the hypothesis that income has no effect on money demand. Can
we test this hypothesis with the usual ¢ test from the estimated regression (20.5.2)? Yes,
provided the sample is large and provided we correct the standard errors as shown in
Eq. (20.5.3), we can use the 7 test to test the significance of an individual coefficient and the
F test to test joint significance of two or more coefficients, using formula (8.4.7).!7

What happens if the error term in a structural equation is autocorrelated and/or corre-
lated with the error term in another structural equation in the system? A full answer to this
question will take us beyond the scope of the book and is better left for the references (see
the reference given in footnote 7). Nevertheless, estimation techniques (such as Zellner’s
SURE technique) do exist to handle these complications.

To conclude the discussion of our numerical example, it may be added that the various
steps involved in the application of 2SLS are now routinely handled by software packages
such as STATA and EViews. It was only for pedagogical reason we showed the details of
2SLS. See Exercise 20.15.

20.6 Mlustrative Examples

In this section we consider some applications of the simultaneous-equation methods.

EXAMPLE 20.1
Advertising,
Concentration,
and Price
Margins

To study the interrelationships among advertising, concentration (as measured by the
concentration ratio), and price-cost margins, Allyn D. Strickland and Leonard W. Weiss
formulated the following three-equation model.'®

Advertising intensity function:
Ad/S = ap + a1M + ax(CD/S) + a3C + a4C? + asGr + agDur (20.6.1)
Concentration function:
C= bo + b1(Ad/S) + b(MES/S) (20.6.2)
Price-cost margin function:

M = ¢y + c1(K/S) + c2Gr + i3C+ c4GD + ¢5(Ad/S) + cs(MES/S)  (20.6.3)

where Ad = advertising expense
§ = value of shipments
C = four-firm concentration ratio
CD = consumer demand
MES = minimum efficient scale
M = price/cost margin
Gr = annual rate of growth of industrial production
Dur = dummy variable for durable goods industry
K = capital stock
GD = measure of geographic dispersion of output

7But take this precaution: The restricted and unrestricted RSS in the numerator must be calculated
using predicted Y (as in Stage 2 of 2SLS) and the RSS in the denominator is calculated using actual
rather than predicted values of the regressors. For an accessible discussion of this point, see T. Dudley
Wallace and |. Lew Silver, Econometrics: An Introduction, Addison-Wesley, Reading, Mass., 1988,

Sec. 8.5.

185ee their “Advertising, Concentration, and Price-Cost Margins,” Journal of Political Economy, vol. 84,
no. 5, 1976, pp. 1109-1121.



EXAMPLE 20.1
(Continued)

TABLE 20.3
OLS Estimates of
Three Equations
(¢ ratios in
parentheses)

TABLE 20.4
Two-Stage Least-
Squares Estimates
of Three Equations
(t ratios in
parentheses)
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By the order conditions for identifiability, Eq. (20.6.2) is overidentified, whereas
Egs. (20.6.1) and (20.6.3) are exactly identified.

The data for the analysis came largely from the 1963 Census of Manufacturers and
covered 408 of the 417 four-digit manufacturing industries. The three equations were first
estimated by OLS, yielding the results shown in Table 20.3. To correct for the simultaneous-
equation bias, the authors reestimated the model using 2SLS. The ensuing results are
given in Table 20.4. We leave it to the reader to compare the two results.

Dependent Variable

Ad/S C m

Eq. (20.6.1) Eq. (20.6.2) Eq. (20.6.3)
Constant —0.0314 (-7.45) 0.2638 (25.93) 0.1682 (17.15)
C 0.0554 (3.56) — 0.0629 (2.89)
c? —0.0568 (—3.38) — —
M 0.1123 (9.84) — —
CD/S 0.0257 (8.94) — —
Gr 0.0387 (1.64) 0.2255 (2.61)
Dur —0.0021 (—1.11) — —
Ad/S — 1.1613 (3.3) 1.6536 (11.00)
MES/S — 4.1852 (18.99) 0.0686 (0.54)
K/s — — 0.1123 (8.03)
GD — — —0.0003 (—2.90)
R? 0.374 0.485 0.402
df 401 405 401

Dependent Variable
Ad/S C M

Eq. (20.6.1) Eq. (20.6.2) Eq. (20.6.3)
Constant —0.0245 (—3.86) 0.2591 (21.30) 0.1736 (14.66)
C 0.0737 (2.84) — 0.0377 (0.93)
(< —0.0643 (—2.64) — —
M 0.0544 (2.01) — —
CD/S 0.0269 (8.96) — —
Gr 0.0539 (2.09) — 0.2336 (2.61)
Dur —0.0018 (—0.93) — —
Ad/S — 1.5347 (2.42) 1.6256 (5.52)
MES/S — 4.169 (18.84) 0.1720 (0.92)
K/S — — 0.1165 (7.30)
GD — — —0.0003 (-2.79)

EXAMPLE 20.2
Klein's Model I

In Example 18.6 we discussed briefly the pioneering model of Klein. Initially, the model
was estimated for the period 1920-1941. The underlying data are given in Table 20.5; and
OLS, reduced-form, and 2SLS estimates are given in Table 20.6. We leave it to the reader
to interpret these results.

(Continued)



EXAMPLE 20.2 TABLE 20.5 Underlying Data for Klein’s Model I

(Continued)

Year c P w 1 K_1 X w’ G T
1920 39.8 12.7 28.8 2.7 180.1 44.9 2.2 2.4 3.4
1921 41.9 12.4 25.5 -0.2 182.8 45.6 2.7 3.9 7.7
1922 45.0 16.9 293 1.9 182.6 50.1 29 3.2 3.9
1923 49.2 18.4 34.1 5.2 184.5 57.2 2.9 2.8 4.7
1924 50.6 19.4 33.9 3.0 189.7 57.1 3.1 3.5 3.8
1925 52.6 20.1 354 5.1 192.7 61.0 3.2 3.3 5.5
1926 55.1 19.6 37.4 5.6 197.8 64.0 33 33 7.0
1927 56.2 19.8 37.9 4.2 203.4 64.4 3.6 4.0 6.7
1928 57.3 21.1 39.2 3.0 207.6 64.5 3.7 4.2 4.2
1929 57.8 21.7 41.3 5.1 210.6 67.0 4.0 4.1 4.0
1930 55.0 15.6 37.9 1.0 215.7 61.2 4.2 5.2 7.7
1931 50.9 11.4 34.5 —-34 216.7 53.4 4.8 59 7.5
1932 45.6 7.0 29.0 —6.2 2133 443 53 4.9 8.3
1933 46.5 11.2 28.5 =5.1 207.1 45.1 5.6 3.7 5.4
1934 48.7 12.3 30.6 -3.0 202.0 49.7 6.0 4.0 6.8
1935 51.3 14.0 33.2 -1.3 199.0 54.4 6.1 4.4 7.2
1936 57.7 17.6 36.8 2.1 197.7 62.7 7.4 2.9 8.3
1937 58.7 17.3 41.0 2.0 199.8 65.0 6.7 4.3 6.7
1938 57.5 15.3 38.2 -1.9 201.8 60.9 7.7 53 7.4
1939 61.6 19.0 41.6 1.3 199.9 69.5 7.8 6.6 8.9
1940 65.0 21.1 45.0 3.3 201.2 75.7 8.0 7.4 9.6
1941 69.7 23.5 53.3 4.9 204.5 88.4 8.5 13.8 11.6
*Interpretation of column heads is listed in Example 18.6.
Source: These data are taken from G. S. Maddala, Econometrics, McGraw-Hill, New York, 1977, p. 238.

TABLE 20.6*

OLS, Reduced- 0L§ : , =2

Form and 2SLS C =16.237 + 0.193P+ 0.796(W+ W’) + 0.089P_, R®=0.978 DW =1.367

Estimates of Klein’s (1.203) (0.091) (0.040) (0.090) ,

Model I [ =10.125 + 0.479P+ 0.333P_; — 0.112K_; R =0919 DW=1.810

(5.465) (0.097) (0.100)  (0.026)
o e i W= 0.064 + 0.439X + 0.146X_; + 0.130t R?=0.985 DW=1.958
NewYork, 1977, p. 242, (1.151)  (0.032) (0.037)  (0.031)

Reduced-form:
P —46.383 + 0.813P_; — 0.213K_; + 0.015X_; + 0.297t — 0.926T+ 0.443G
(10.870) (0.444)  (0.067)  (0.252)  (0.154) (0.385) (0.373)
R®=0.753 DW = 1.854
W+ W =40.278 + 0.823P_; — 0.144K 1 + 0.115X_; + 0.881t — 0.567T+ 0.859G
(8.787) (0.359)  (0.054)  (0.204)  (0.124) (0.311) (0.302)
R? = 0.949 DW =2.395
X =78281 + 1.724P_; — 0.319K_; + 0.094X_; + 0.878t— 0.565T + 1.317G
(18.860) (0.771)  (0.110)  (0.438)  (0.267) (0.669) (0.648)
R?—=0.882 DW= 2.049

25LS:
¢ =16.543 + 0.019P + 0.810(W+ W) + 0.214P_, R?=0.9726
(1.464) (0.130) (0.044) (0.118)
[ =20.284 + 0.149P+ 0.616P_1 — 0.157K._ R? —0.8643
(8.361) (0.191) (0.180)  (0.040)
W = 0.065 + 0.438X + 0.146X_; + 0.130¢ R2=0.9852

(1.894) (0.065) (0.070) (0.053)

*Interpretation of variables is listed in Example 18.6 (standard errors in parentheses).

726
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EXAMPLE 20.3 In arather unusual application of recursive simultaneous-equation modeling, Cheng F. Lee
The Capital Asset and W. P. Lloyd'? estimated the following model for the oil industry:

Pricing Model

Expressed as a Rie= o + M+ e

Recursive System Rot =02 + Ba1Ris + v2M: + Uz
R3¢ = a3 + B31Rie + B32Rat + y3Me + use
Rat = oa + BarRie + BazRat + BazR3e + yaMe + uae
Rst = a5 + BsiRit + BsaRat + Bs3Rse + BsaRat + ysMr + ust
Ret = a6 + Be1Rit + Be2Rat + Be3R3t + BeaRat + BosRst + yeMt + Ust

R7t = a7 + B71R1t + B72Rat + B73R3t + BraRat + B75Rse + BreRet + vz M + Uzt

where Ry = rate of return on security 1 (= Imperial Oil)
R, = rate of return on security 2 (= Sun Oil)

Rz = rate of return on security 7 ( = Standard of Indiana)
M; = rate of return on the market index
ui = disturbances (i=1, 2,...,7)

Before we present the results, the obvious question is: How do we choose which is
security 1, which is security 2, and so on? Lee and Lloyd answer this question purely
empirically. They regress the rate of return on security i on the rates of return of the
remaining six securities and observe the resulting R?. Thus, there will be seven such
regressions. Then they order the estimated R? values, from the lowest to the highest. The
security having the lowest R? is designated as security 1 and the one having the highest
R? is designated as security 7. The idea behind this is intuitively simple. If the R? of the
rate of return of, say, Imperial Qil, is lowest with respect to the other six securities, it
would suggest that this security is affected least by the movements in the returns of
the other securities. Therefore, the causal ordering, if any, runs from this security to the
others and there is no feedback from the other securities.

Although one may object to such a purely empirical approach to causal ordering, let us
present their empirical results nonetheless, which are given in Table 20.7.

In Exercise 5.5 we introduced the characteristic line of modern investment theory,
which is simply the regression of the rate of return on security i on the market rate of
return. The slope coefficient, known as the beta coefficient, is a measure of the volatility
of the security’s return. What the Lee-Lloyd regression results suggest is that there are
significant intra-industry relationships between security returns, apart from the common
market influence represented by the market portfolio. Thus, Standard of Indiana’s return
depends not only on the market rate of return but also on the rates of return on Shell Oil,
Phillips Petroleum, and Union Oil. To put the matter differently, the movement in the
rate of return on Standard of Indiana can be better explained if in addition to the mar-
ket rate of return we also consider the rates of return experienced by Shell Oil, Phillips
Petroleum, and Union Oil.

(Continued)

19“The Capital Asset Pricing Model Expressed as a Recursive System: An Empirical Investigation,”
Journal of Financial and Quantitative Analysis, June 1976, pp. 237-249.
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EXAMPLE 20.3 TABLE 20.7 Recursive System Estimates for the Oil Industry

(Continued)

Linear Form
Dependent Variables

Standard  Shell Phillips  Union Standard Sun Imperial
of Indiana oil Petroleum oil of Ohio Oil oil
Standard
of Indiana
Shell Oil 0.2100*
(2.859)
Phillips 0.2293* 0.0791
Petroleum (2.176) (1.065)
Union Oil 0.1754* 0.2171* 0.2225*
(2.472) (3.177) (2.337)
Standard —0.0794 0.0147  0.4248* 0.1468*
of Ohio (=1.294) (0.235) (5.501) (1.735)
Sun Oil 0.1249 0.1710* 0.0472 0.1339 0.0499
(1.343) (1.843) (0.355) (0.908) (0.271)
Imperial Oil —0.1077 0.0526  0.0354 0.1580 —0.2541* 0.0828
(—1.412) (0.6804) (0.319) (1.290) (—1.691) (0.971)
Constant 0.0868 —0.0384 -—-0.0127 -0.2034 0.3009 0.2013 0.3710*
(0.681) (1.296) (—0.068) (0.986) (1.204) (1.399) (2.161)
Market index  0.3681* 0.4997* 0.2884 0.7609* 0.9089* 0.7161* 0.6432*
(2.165) (3.039) (1.232) (3.069) (3.094) (4.783) (3.774)
R? 0.5020 0.4658 0.4106 0.2532 0.0985 0.2404 0.1247
Durbin— 2.1083 2.4714  2.2306 2.3468 2.2181 2.3109 1.9592
Watson

*Denotes significance at 0.10 level or better for two-tailed test.
Note: The t values appear in parentheses beneath the coefficients.

Source: Cheng F. Lee and W. P. Lloyd, op. cit., Table 3b.

EXAMPLE 20.4
Revised Form of
St. Louis Model*°

The well-known, and often controversial, St. Louis model originally developed in the late
1960s has been revised from time to time. One such revision is given in Table 20.8, and
the empirical results based on this revised model are given in Table 20.9. (Note: A dot over
a variable means the growth rate of that variable.) The model basically consists of Egs. (1),
(2), (4), and (5) in Table 20.8, the other equations representing the definitions. Equa-
tion (1) was estimated by OLS. Equations (1), (2), and (4) were estimated using the Almon
distributed-lag method with (endpoint) constraints on the coefficients. Where relevant,
the equations were corrected for first-order (p1) and/or second-order (pz) serial
correlation.

Examining the results, we observe that it is the rate of growth in the money supply that
primarily determines the rate of growth of (nominal) GNP and not the rate of growth
in high-employment expenditures. The sum of the M coefficients is 1.06, suggesting
that a 1 percent (sustained) increase in the money supply on the average leads to about
1.06 percent increase in the nominal GNP. On the other hand, the sum of the E coeffi-
cients, about 0.05, suggests that a change in high-employment government expenditure
has little impact on the rate of growth of nominal GNP. It is left to the reader to interpret
the results of the other regressions reported in Table 20.9.

2OFederal Reserve Bank of St. Louis, Review, May 1982, p. 14.
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(Continued)

TABLE 20.9
In-Sample
Estimation: 1960-1
to 1980-1V
(absolute value of
t statistic

in parentheses)
Source: Federal Reserve

Bank of St. Louis, Review,
May 1982, p. 14.
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TABLE 20.8 The St. Louis Model

. 4 . 4 .
) Y1i=Cl+ Y CMi(M—j)+ > CE(Ej)+ el
i=0 i=0
. 4 . 5 . -
(2) Pi=C2+ Z CPE,’(PEt_,') + Z CD,‘(Xt_,'—XFt,n)
i=1 i=0

+ CPA(PA;) + CDUM1(DUMT) + CDUM2(DUM2) + £2;

. 21 .
3) PA; = > CPRL;(P¢-i)
i=1 0 }
(4) RL; = C3+ Y CPRL(P(;) + &3¢
i=0
(5) Ur — UFr = CG(GAPy) + CG1(GAP¢_1) + &4
(6) Ye = (P/100)(Xy)
7) Y = [(Yd/Yed)* — 11100
(®) Xt = [(Xe/Xe-)* — 11100
) Pe = [(P/P:_)* — 11100
a1 XFf = [(XF¢/Xc_1)* — 11100
Y = nominal GNP XF = potential output (Rasche/Tatom)
M = money stock (M1) RL = corporate bond rate
E = high employment expenditures U = unemployment rate
P = GNP deflator (1972 = 100) UF = unemployment rate at full employment
PE = relative price of energy DUMI = control dummy (1971-11I to 1973-1 = 1; 0 elsewhere)
X = output in 1972 dollars DUM2 = postcontrol dummy (197311 to 1975-1 = 1; 0 elsewhere)

Source: Federal Reserve Bank of St. Louis, Review, May 1982, p. 14.

) Ye= 2.44 + 0.40M,+ 0.39M,q + 0.22M;_» + 0.06M_3 — 0.01M¢_4
(2.15) (3.38)  (5.06) (2.18) (0.82) 0.11)
+ 0.06E ;4 0.02F, 1 — 0.02F;» — 0.02E;_3 + 0.01F;_4
(1.46)  (0.63) (0.57) (0.52) (0.34)
R2=039 se=3.50 DW =202

) Pi= 0.96 + 0.01PE,_; + 0.04PE,_, — 0.01PE_3 + 0.02PE; 4

(2.53) (0.75) (1.96) (0.73) (1.38)

— 0.00(X;— XF¥) + 0.01(X—1— XF£1) + 0.02(Xi—o— XF¥_)
(0.18) (1.43) (4.63)

+ 0.02(Xt—3— XFf3) + 0.02(Xe—a— XFEs + 0.01(Xi_s— XFfs)
(3.00) (2.42) (2.16)

+ 1.03(PA;) — 0.61(DUM1;) + 1.65(DUM2))
(10.49) (1.02) 2.71)

R?=0.80 se=1.28 DW =1.97 p=0.12

(4) /RT_t=2.97+0.96§)j Pe_i
G12) (522 "
R2—=032 se=0.33 DW=1.76 /=094
(5)  Ui—UF = 0.28(GAP) + 0.14(GAP, 1)

(11.89) 6.31)
RZ=0.63 se=0.17 DW=1.95 p1=1.43  (p,=0.52
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—_—

. Assuming that an equation in a simultaneous-equation model is identified (either

Summary and
exactly or over-), we have several methods to estimate it.

Conclusions . :
2. These methods fall into two broad categories: Single-equation methods and systems
methods.

3. For reasons of economy, specification errors, etc., the single-equation methods are by far
the most popular. A unique feature of these methods is that one can estimate a single-
equation in a multiequation model without worrying too much about other equations in
the system. (Note: For identification purposes, however, the other equations in the
system count.)

4. Three commonly used single-equation methods are OLS, ILS, and 2SLS.

5. Although OLS is, in general, inappropriate in the context of simultaneous-equation
models, it can be applied to the so-called recursive models where there is a definite but
unidirectional cause-and-effect relationship among the endogenous variables.

6. The method of ILS is suited for just or exactly identified equations. In this method OLS
is applied to the reduced-form equation, and it is from the reduced-form coefficients that
one estimates the original structural coefficients.

7. The method of 2SLS is especially designed for overidentified equations, although it can
also be applied to exactly identified equations. But then the results of 2SLS and ILS are
identical. The basic idea behind 2SLS is to replace the (stochastic) endogenous ex-
planatory variable by a linear combination of the predetermined variables in the model
and use this combination as the explanatory variable in lieu of the original endogenous
variable. The 2SLS method thus resembles the instrumental variable method of
estimation in that the linear combination of the predetermined variables serves as an
instrument, or proxy, for the endogenous regressor.

8. A noteworthy feature of both ILS and 2SLS is that the estimates obtained are consistent,
that is, as the sample size increases indefinitely, the estimates converge to their true
population values. The estimates may not satisfy small-sample properties, such as unbi-
asedness and minimum variance. Therefore, the results obtained by applying these
methods to small samples and the inferences drawn from them should be interpreted
with due caution.

EXERCISES Questions

20.1. State whether each of the following statements is true or false:

a. The method of OLS is not applicable to estimate a structural equation in a
simultaneous-equation model.

b. In case an equation is not identified, 2SLS is not applicable.

c. The problem of simultaneity does not arise in a recursive simultaneous-equation
model.

IS

. The problems of simultaneity and exogeneity mean the same thing.

i

The 2SLS and other methods of estimating structural equations have desirable
statistical properties only in large samples.

There is no such thing as an R? for the simultaneous-equation model as a whole.

0"~

The 2SLS and other methods of estimating structural equations are not applicable
if the equation errors are autocorrelated and/or are correlated across equations.

h. If an equation is exactly identified, ILS and 2SLS give identical results.
*Optional.




20.2.

20.3.

20.4.

20.5.
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Why is it unnecessary to apply the two-stage least-squares method to exactly iden-
tified equations?

Consider the following modified Keynesian model of income determination:
Ci = Bio+ BuY: +uy

Iy = Boo + B Ye + B2 Yoot + uy
Yt = Ct +]t + Gt

where C = consumption expenditure
I = investment expenditure
Y = income

G = government expenditure
G;and Y, ; are assumed predetermined

a. Obtain the reduced-form equations and determine which of the preceding
equations are identified (either just or over-).

b. Which method will you use to estimate the parameters of the overidentified
equation and of the exactly identified equation? Justify your answer.

Consider the following results:”

OLS: W, = 0276 + 0.258F, + 0.0465,_, + 4.959V, R =0.924
OLS: B, =2.693 + 0.232 — 0.544X, -+ 0.247M, + 0.064M,_, R*> = 0.982
2SLS: W, = 0.272 + 0.257P; + 0.0465,_, + 4.966V, R?>=10.920
2SLS: B, = 2.686 + 02330, — 0.544X, + 0.246M, + 0.046M, | R> = 0.981

where W,, P,, M,, and X, are percentage changes in earnings, prices, import
prices, and labor productivity (all percentage changes are over the previous year),
respectively, and where V; represents unfilled job vacancies (percentage of total
number of employees).

“Since the OLS and 2SLS results are practically identical, 2SLS is meaningless.”
Comment.

Assume that production is characterized by the Cobb—Douglas production function
0; = AK?L!

where 0O = output
K = capital input
L = labor input
A, a, and B = parameters
i = ith firm

Given the price of final output P, the price of labor W, and the price of capital R,
and assuming profit maximization, we obtain the following empirical model of
production:

Production function:

nQ;,=lnAd+aoahhK;+InL; +Inuy, @)

*Source: Prices and Earnings in 1951-1969: An Econometric Assessment, Department of Employment,
United Kingdom, Her Majesty’s Stationery Office, London, 1971, p. 30.

fOptional.
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20.6.

20.7.

Marginal product of labor function:
w
aniz—lnﬂ—i-lnL,»—i—lnF—i—lnuz,- 2)

Marginal product of capital function:
R
an,-:—lna+1nK,-+1nF+lnu3,- 3)

where 11, up, and u3 are stochastic disturbances.

In the preceding model there are three equations in three endogenous variables
0, L,and K. P R, and W are exogenous.

a. What problems do you encounter in estimating the model if @ + 8 = 1, that is,
when there are constant returns to scale?

b. Even if o + B # 1, can you estimate the equations? Answer by considering the
identifiability of the system.

c. If the system is not identified, what can be done to make it identifiable?

Note: Equations (2) and (3) are obtained by differentiating O with respect to labor
and capital, respectively, setting them equal to W/P and R/P, transforming the
resulting expressions into logarithms, and adding (the logarithm of) the disturbance
terms.

Consider the following demand-and-supply model for money:
Demand for money: Mtd =Bo+ B Y1+ BoR + B3P +uy;
Supply of money: M = oy 4+ o1 Y, + uy

where M = money

Y = income
R = rate of interest
P = price

Assume that R and P are predetermined.

a. Is the demand function identified?

b. TIs the supply function identified?

¢. Which method would you use to estimate the parameters of the identified
equation(s)? Why?

d. Suppose we modify the supply function by adding the explanatory variables Y;_;
and M,_;. What happens to the identification problem? Would you still use the
method you used in (¢)? Why or why not?

Refer to Exercise 18.10. For the two-equation system there obtain the reduced-form

equations and estimate their parameters. Estimate the indirect least-squares regres-

sion of consumption on income and compare your results with the OLS regression.

Empirical Exercises

20.8.

Consider the following model:

R = Bo+ BiM, + BY; +uy,
Y =ap+ a1 R, +uy

where M, (money supply) is exogenous, R, is the interest rate, and Y; is GDP.
a. How would you justify the model?
b. Are the equations identified?

c. Using the data given in Table 20.2, estimate the parameters of the identified
equations. Justify the method(s) you use.


huhua
Pen
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20.9. Suppose we change the model in Exercise 20.8 as follows:

R = Bo+ BiM; + BoY, + B3Yi—1 + uys
Y =ap+ a1 R, +uy,

a. Find out if the system is identified.
b. Using the data given in Table 20.2, estimate the parameters of the identified
equation(s).
20.10. Consider the following model:
Ry = Bo+ BiM, + B2Y; +uy,
Yi=a0+ iR +arl; +uy
where the variables are as defined in Exercise 20.8. Treating / (domestic invest-

ment) and M exogenously, determine the identification of the system. Using the
data given in Table 20.2, estimate the parameters of the identified equation(s).

20.11. Suppose we change the model of Exercise 20.10 as follows:

R: = Bo+ BiM; + BoY: +uy;
Yi = a0+ a1 Ry +axly + uy,
I =y + iR +us

Assume that M is determined exogenously.
a. Find out which of the equations are identified.

b. Estimate the parameters of the identified equation(s) using the data given in
Table 20.2. Justify your method(s).

20.12. Verify the standard errors reported in Eq. (20.5.3).

20.13. Return to the demand-and-supply model given in Egs. (20.3.1) and (20.3.2).
Suppose the supply function is altered as follows:

Or=Bo+ B1Pi—1 +uy
where P,_; is the price prevailing in the previous period.
a. If X (expenditure) and P,_; are predetermined, is there a simultaneity problem?

b. Ifthere is, are the demand and supply functions each identified? If they are, obtain
their reduced-form equations and estimate them from the data given in Table 20.1.

¢. From the reduced-form coefficients, can you derive the structural coefficients?
Show the necessary computations.

20.14. Class Exercise: Consider the following simple macroeconomic model for the U.S.
economy, say, for the period 1960-1999."

Private consumption function:

Ci=ay+o Y +arCiy +uy, a; > 0,0 <oy <1

Private gross investment function:
Iy = Bo+ B1Ye + BaR: + B3li—1 + un B1>0,8<0,0<p;<1
A money demand function:
Ri =X+ MY +2oM; + A3 P + g Ry +uz,
AM>0,2<0,23>00<2ty<1

*Adapted from H. R. Seddighi, K. A. Lawler, and A. V. Katos, Econometrics: A Practical Approach,
Routledge, New York, 2000, p. 204.
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20.15.

20.16.

Income identity:
Y =C+ 1+ G,

where C = real private consumption; / = real gross private investment, G = real
government expenditure, ¥ = real GDP, M = M2 money supply at current prices,
R = long-term interest rate (%), and P = Consumer Price Index. The endogenous
variables are C, I, R, and Y. The predetermined variables are: C;_,/[,_|,
M;_1,P,,R,_1, and G; plus the intercept term. The u’s are the error terms.

a. Using the order condition of identification, determine which of the four equa-
tions are identified, either exact or over-.

b. Which method(s) do you use to estimate the identified equations?

c. Obtain suitable data from government and/or private sources, estimate the
model, and comment on your results.

In this exercise we examine data for 534 workers obtained from the Current Popu-
lation Survey (CPS) for 1985. The data can be found as Table 20.10 on the textbook
website.” The variables in this table are defined as follows:

W = wages $, per hour; occup = occupation; sector = 1 for manufacturing, 2 for
construction, 0 for other; union = 1 if union member, 0 otherwise; educ = years of
schooling; exper = work experience in years; age = age in years; sex = 1 for
female; marital status = | if married; race = 1 for other, 2 for Hispanic, 3 for white;
region = 1 if lives in the South.

Consider the following simple wage determination model:
In W = B, + B,Educ + BsExper + B4Exper® + u; M

a. Suppose education, like wages, is endogenous. How would you find out that in
Equation (1) education is in fact endogenous? Use the data given in the table in
your analysis.

b. Does the Hausman test support your analysis in (a)? Explain fully.

Class Exercise: Consider the following demand-and-supply model for loans of

commercial banks to businesses:

Demand: Qf =a; + xR, + aaRD; + a4IPI, + uy;
Supply: Oj = B1 + B2R; + B3RS, + B4TBD; + uy,

Where Q = total commercial bank loans ($billion); R = average prime rate; RS =
3-month Treasury bill rate; RD = AAA corporate bond rate; [Pl = Index of
Industrial Production; and TBD = total bank deposits.

a. Collect data on these variables for the period 1980-2007 from various sources,
such as www.economagic.com, the website of the Federal Reserve Bank of
St. Louis, or any other source.

b. Are the demand and supply functions identified? List which variables are
endogenous and which are exogenous.

c. How would you go about estimating the demand and supply functions listed
above? Show the necessary calculations.

d. Why are both R and RS included in the model? What is the role of IPI in the
model?

*Data can be found on the Web, at http://lib.stat.cmu.edu/datasets/cps_85_wages.
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Appendix 20A

20A.1 Bias in the Indirect Least-Squares Estimators

To show that the ILS estimators, although consistent, are biased, we use the demand-and-supply
model given in Egs. (20.3.1) and (20.3.2). From Eq. (20.3.10) we obtain

o
B = i,
Now
o Z%Xt
I; = W from Eq. (20.3.7)
and

2 D DXt
I, = S22 from Eq. (20.3.5)

Therefore, on substitution, we obtain

b= ®
Using Egs. (20.3.3) and (20.3.4), we obtain
pe = Tix, + (w, —w) 2)
gr = zx; + (v = V) (3)
where w and v are the mean values of w;, and v,, respectively.
Substituting Egs. (2) and (3) into Eq. (1), we obtain
b - 1_1;13 sz,z + X0 = D
LY xF 4 Y (W —w)x, @

_ I+ Y0 =/ Y7
I+ X (w —wx,/ Y x7

Since the expectation operator E is a linear operator, we cannot take the expectation of Eq. (4),
although it is clear that 8, # (I13/I1;) generally. (Why?)
But as the sample size tends to infinity, we can obtain

plim IT5 + plim Y (v, — ¥)x;/ Y x2
plim TT; + plim > (w, — w)x,/ > x?

plim (B1) = )

where use is made of the properties of plim, namely, that

A lim 4
plim (A4 + B) = plim A + plim B and plim | — | = &
B plim B

Now as the sample size is increased indefinitely, the second term in both the denominator and the
numerator of Eq. (5) tends to zero (why?), yielding

plim (B1) = E—j (6

showing that, although biased, 31 is a consistent estimator of S;.
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20A.2 Estimation of Standard Errors
of 2SLS Estimators

The purpose of this appendix is to show that the standard errors of the estimates obtained from the
second-page regression of the 2SLS procedure, using the formula applicable in OLS estimation, are
not the “proper” estimates of the “true” standard errors. To see this, we use the income—money sup-
ply model given in Egs. (20.4.1) and (20.4.2). We estimate the parameters of the overidentified money
supply function from the second-stage regression as

Yo = Boo + B Vs + u} (20.4.6)
where
uf = ua + Borily )

Now when we run regression (20.4.6), the standard error of, say, ,321 is obtained from the following

expression:
a2
A @
var (fo1) = == (8)
Yt
where

52 do(i))? _ S (Yar — Bao — Ba1 Yir)?

T T n=2 n—2

)

But 0. is not the same thing as 6;,, where the latter is an unbiased estimate of the true variance
of u,. This difference can be readily verified from Eq. (7). To obtain the true (as defined previously)
&uzz, we proceed as follows:

iy = Yar — P20 — P Y1

where B0 and B are the estimates from the second-stage regression. Hence,

52 — > (Yo — Bao — Ba1 Yir)? (10)

42 n—2

Note the difference between Egs. (9) and (10): In Eq. (10) we use actual Y; rather than the estimated
Y, from the first-stage regression.

Having estimated Eq. (10), the easiest way to correct the standard errors of coefficients estimated
in the second-stage regression is to multiply each one of them by 6y, /6 ;. Note that if Y, and ¥, 1; are
very close, that is, the R? in the first-stage regression is very high, the correction factor 6, /& ,+ will
be close to 1, in which case the estimated standard errors in the second-stage regression may be taken
as the true estimates. But in other situations, we shall have to use the preceding correction factor.
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